5、在學習歌曲時,我遵循音樂新課程改革中“學生自主學習”這一教學模式,并將這一模式貫穿于整個教授新歌的過程中。讓學生通過兩遍的聆聽后讓學生充分感受歌曲的情緒,并且讓學生充分感受到兒童團員們不畏強暴,英勇殺敵的戰(zhàn)斗精神。之后,讓學生采用自主式學習方式,挑選出自己喜歡的樂句學唱,并讓學生自己給歌曲創(chuàng)編動作,初步學唱之后自己找難點并且大家一起解決,在歌曲難點三個“只怕”的演唱,采用對比的方法,幫助學生更快更準確解決難點。把歌曲學會之后,通過兩部隊比賽的方式,鼓勵學生更加有激情地演唱歌曲和考查學生對歌曲的熟練程度。最后進行兒童團抗日戰(zhàn)斗表演既全班完整演唱歌曲,讓學生能用歌聲恰當?shù)谋磉_出歌曲演唱情緒。6、最后小結(jié),通過談話指導學生要珍惜著來之不易的幸福生活,學習小英雄們頑強拼搏,勇往直前的精神,加強了學生從小努力學習,長大建設祖國的教育意義。
接著,采用師生對唱,男女對唱、領(lǐng)唱等不同的演唱方式來鞏固歌曲,在整個學唱過程中,我隨時進行難點、錯誤的糾正,通過聲情并茂的演唱示范,指導學生能用優(yōu)美、圓潤的聲音演唱全曲,并通過歌曲中反復出現(xiàn)的“圓圓”二字,激發(fā)學生的愛國之情。環(huán)節(jié)三:拓展延伸,創(chuàng)編謎語對于三年級的學生來說,創(chuàng)編歌詞并非是一件容易的事,但是新課程標準明確指出,音樂教師應該培養(yǎng)學生的創(chuàng)編能力,而且《搖船調(diào)》這首歌曲的前半部分很適合學生進行歌詞創(chuàng)編活動。為了降低難度,我首先示范事先創(chuàng)編好的第一段歌詞,讓學生按照自己的意愿自由組合創(chuàng)編,學生結(jié)合生活常識猜出謎底,然后將自己編創(chuàng)的《新?lián)u船調(diào)》表演出來,并在《搖船調(diào)》優(yōu)美的音樂中結(jié)束課堂。以上就是我對這節(jié)課的教學設計,如有不足之處,敬請各位評委老師批評指正。謝謝!
得出這樣便于口算的道理,也為幫助學生探索“兩位數(shù)乘兩位數(shù)”的豎式計算方法埋下了伏筆。與此同時也允許學生把12用他們認為更便于計算的方法進行計算。另一種是直接用豎式計算。豎式的擺法學生肯定沒問題,對于第一步如何計算也難不倒學生,關(guān)鍵是第二步、第三步,通過學生自己探索算法,讓學生弄清第二步、第三步為什么這樣寫?根據(jù)學生的匯報,強調(diào)書寫格式并板書,用個位上的2去乘24,乘得的積是表示48個一,積的末尾要和個位對齊;用十位上的1去乘24,乘得的積表示24個十,乘得積的末尾要和十位對齊(個位上的0省略不寫);最后把兩次乘得的積相加。(這樣利用遷移原理,使學生一步一步地加深對算理和算法的認識和理解,不但突出了教學重點,而且突破了教學難點。)3、教師點撥:筆算乘法時:(1)從個位乘起,先用第二個因數(shù)的個位上的數(shù)依次去乘第一個因數(shù)的每一位上的數(shù),得數(shù)末位和第一個因數(shù)的個位對齊;
一、說教材與學生本節(jié)課所授內(nèi)容是人民教育出版社出版的,義務教育課程標準實驗教科書,小學數(shù)學三年級下冊第五單元《整十、整百數(shù)乘整十數(shù)》?!墩?、整百數(shù)乘整十數(shù)》這一知識點經(jīng)常用來解決我們在日常生活中遇到問題,為發(fā)展學生靈活運用不同計算策略解決問題的能力打下基礎(chǔ)。同時體現(xiàn)新課標提出的“人人都能獲得必要的數(shù)學”這一理念。本冊教材是在學生能夠比較熟練地口算整十、整百數(shù)乘一位數(shù)的基礎(chǔ)上進行教學的。口算是筆算的基礎(chǔ),也是估算的基礎(chǔ)。教材先安排口算,在擴大學生的口算范圍的同時,為學生學習新的估算和兩位數(shù)乘兩位數(shù)筆算方法做好必要的準備。并且,在估算和筆算教學活動中,又可以進一步鞏固口算。這樣,有利于培養(yǎng)、提高學生的計算能力。二、說教學理念1、數(shù)學文化觀。數(shù)學是一種文化,它不僅表現(xiàn)為一個結(jié)果,更加重要的是它是人類文明發(fā)展過程的一個見證。所以教學上應讓學生去經(jīng)歷知識形成的過程,注重學生的經(jīng)歷與體驗。
說教學內(nèi)容:可能性的大?。ㄈ私贪嫒昙壣蟽訮106~108例3、例4、例5)說教學目標:1、知識技能目標:使學生進一步體驗不確定事件,知道事件發(fā)生的可能性是有大小的。2、過程方法目標:經(jīng)歷事件發(fā)生的可能性大小的探索過程,初步感受隨機現(xiàn)象的統(tǒng)計規(guī)律性;在活動交流中培養(yǎng)合作學習的意識和能力。3、情感態(tài)度價值觀目標:感受數(shù)學就在自己身邊,體會數(shù)學學習與現(xiàn)實的聯(lián)系;進一步培養(yǎng)學生求實態(tài)度和科學精神。說教學重難點教學重點:學生通過試驗操作、分析推理知道事件發(fā)生的可能性有大有小。教學難點:利用事件發(fā)生的可能性的知識解決實際問題。說教學過程:一、感受可能性的大小。1.出示問題:(1)談話引入:通過前面的學習,我們已經(jīng)知道了在生活中,有的事情可能發(fā)生,有的事情是不可能發(fā)生的,今天我們進一步研究可能性的問題。
參與實踐,充分體驗1、直觀感知,初步認識噸讓學生說說自己的體重,請出4個體重大約25千克的同學站在一起。算一算4個學生的體重大約是多少千克。再推算一下40個這樣的同學大約重多少千克?講述:為了簡便計算1000千克,我們把1000千克規(guī)定為1噸。噸也可以用英文字母“t”表示。2、結(jié)合實際,進一步認識噸我們教室里的桌、椅、書本等,你認為用噸做單位合適嗎?你認為多少張桌子或者椅子合在一起大約重1噸?學生獨立思考;引導學生在小組內(nèi)展開討論;小組匯報討論結(jié)果;問:在生活中,你見過哪些物體是用噸做單位的?學生舉例。講述:計量比較重或大宗物品有多重時,通常用噸做單位。練習:1棵白菜重1千克,( )棵白菜重1噸。 1袋大米重100千克,( )袋大米重1噸。 1頭奶牛重500千克,( )頭奶牛重1噸。 1桶油重200千克,( )桶油重1噸。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
教學效果:部分學生能舉一反三,較好地掌握分式方程及其應用題的有關(guān)知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習四、教學反思數(shù)學來源于生活,并應用于生活,讓學生用數(shù)學的眼光觀察生活,除了用所學的數(shù)學知識解決一些生活問題外,還可以從數(shù)學的角度來解釋生活中的一些現(xiàn)象,面向生活是學生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學生熟悉的實例,如:學生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學生真切地理解數(shù)學來源于生活這一事實。有些學生對應用題有一種心有余悸的感覺,其關(guān)鍵是面對應用題不知怎樣分析、怎樣找到等量關(guān)系。在教學中,如果采用列表的方法可幫助學生審題、找到等量關(guān)系,從而學會分析問題??赡軐W生最初并不適應這種做法,可采用分步走的方法,首先,讓學生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習中讓學生悟出解決問題的竅門,學會舉一反三,最后達到能獨立解決問題的目的。
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
方法總結(jié):作平移圖形時,找關(guān)鍵點的對應點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關(guān)鍵點;③利用第一組對應點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調(diào)學生自主探索和合作交流,學生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質(zhì)地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
【類型一】 逆用積的乘方進行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運用此公式可進行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大小:213×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關(guān)鍵.三、板書設計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學過程中教師可以采用與前面相同的方式展開教學.教師在講解積的乘方公式的應用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學生的運算速度和應用能力,也可以補充講解:當n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當n為偶數(shù)時,(-a)n=an(n為正整數(shù))
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運算進行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運用冪的乘方公式的探究方式和前節(jié)類似,因此在教學中可以利用該優(yōu)勢展開教學,在探究過程中可以進一步發(fā)揮學生的主動性,盡可能地讓學生在已有知識的基礎(chǔ)上,通過自主探究,獲得冪的乘方運算的感性認識,進而理解運算法則
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系