【教學(xué)目標(biāo)】知識目標(biāo):⑴ 理解指數(shù)函數(shù)的圖像及性質(zhì);⑵ 了解指數(shù)模型,了解指數(shù)函數(shù)的應(yīng)用.能力目標(biāo):⑴ 會畫出指數(shù)函數(shù)的簡圖;⑵ 會判斷指數(shù)函數(shù)的單調(diào)性;⑶了解指數(shù)函數(shù)在生活生產(chǎn)中的部分應(yīng)用,從而培養(yǎng)學(xué)生分析與解決問題能力.【教學(xué)重點(diǎn)】⑴ 指數(shù)函數(shù)的概念、圖像和性質(zhì);⑵ 指數(shù)函數(shù)的應(yīng)用實(shí)例.【教學(xué)難點(diǎn)】指數(shù)函數(shù)的應(yīng)用實(shí)例.【教學(xué)設(shè)計】⑴ 以實(shí)例引入知識,提升學(xué)生的求知欲;⑵ “描點(diǎn)法”作圖與軟件的應(yīng)用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì);⑶知識的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力;⑷實(shí)際問題的解決,培養(yǎng)學(xué)生分析與解決問題的能力;⑸以小組的形式進(jìn)行討論、探究、交流,培養(yǎng)團(tuán)隊精神.【教學(xué)備品】教學(xué)課件.【課時安排】2課時.(90分鐘)【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 4.2指數(shù)函數(shù). *創(chuàng)設(shè)情景 興趣導(dǎo)入 問題 某種物質(zhì)的細(xì)胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,知道分裂的次數(shù),如何求得細(xì)胞的個數(shù)呢? 解決 設(shè)細(xì)胞分裂次得到的細(xì)胞個數(shù)為,則列表如下: 分裂次數(shù)x123…x…細(xì)胞個數(shù)y2=4=8=…… 由此得到, . 歸納 函數(shù)中,指數(shù)x為自變量,底2為常數(shù). 介紹 播放 課件 質(zhì)疑 引導(dǎo) 分析 了解 觀看 課件 思考 領(lǐng)悟 導(dǎo)入 實(shí)例 比較 易于 學(xué)生 想象 歸納 領(lǐng)會 函數(shù) 的變 化意 義 5
創(chuàng)設(shè)情景 興趣導(dǎo)入問題 觀察鐘表,如果當(dāng)前的時間是2點(diǎn),那么時針走過12個小時后,顯示的時間是多少呢?再經(jīng)過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當(dāng)前時間2點(diǎn)重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當(dāng)取定義域內(nèi)的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實(shí)數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
【教學(xué)目標(biāo)】知識目標(biāo):(1)掌握利用計算器求角度的方法;(2)了解已知三角函數(shù)值,求指定范圍內(nèi)的角的方法.能力目標(biāo):(1)會利用計算器求角;(2)已知三角函數(shù)值會求指定范圍內(nèi)的角;(3)培養(yǎng)使用計算工具的技能.【教學(xué)重點(diǎn)】已知三角函數(shù)值,利用計算器求角;利用誘導(dǎo)公式求出指定范圍內(nèi)的角.【教學(xué)難點(diǎn)】已知三角函數(shù)值,利用計算器求指定范圍內(nèi)的角.【教學(xué)設(shè)計】(1)精講已知正弦值求角作為學(xué)習(xí)突破口;(2)將余弦、正切的情況作類比讓學(xué)生小組討論,獨(dú)立認(rèn)知學(xué)習(xí);(3)在練習(xí)——討論中深化、鞏固知識,培養(yǎng)能力;(4)在反思交流中,總結(jié)知識,品味學(xué)習(xí)方法.【教學(xué)備品】教學(xué)課件.【課時安排】2課時.(90分鐘)【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 5.7已知三角函數(shù)值求角 *構(gòu)建問題探尋解決 問題 已知一個角,利用計算器可以求出它的三角函數(shù)值, 利用計算器,求= (精確到0.0001): 反過來,已知一個角的三角函數(shù)值,如何求出相應(yīng)的角? 解決 準(zhǔn)備計算器.觀察計算器上的按鍵并閱讀相關(guān)的使用說明書.小組內(nèi)總結(jié)學(xué)習(xí)已知三角函數(shù)值,利用計算器求出相應(yīng)的角的方法. 利用計算器求出x:,則x= 歸納 計算器的標(biāo)準(zhǔn)設(shè)定中,已知正弦函數(shù)值,只能顯示出?90°~ 90°(或)之間的角. 介紹 質(zhì)疑 提問 引導(dǎo) 說明 了解 思考 動手 操作 探究 利用 問題 引起 學(xué)生 的好 奇心 并激 發(fā)其 獨(dú)立 尋求 計算 器操 作的 欲望 10
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
本節(jié)的內(nèi)容主要是反比例函數(shù)的概念教學(xué).反比例函數(shù)概念的建立,不能從形式上進(jìn)行簡單的抽象與概括,而是對這些實(shí)例從不同角度抽象出本質(zhì)屬性后,再進(jìn)行概括。教材設(shè)計的基本思路是從現(xiàn)實(shí)生活中大量的反比例關(guān)系中抽象出反比例函數(shù)概念,讓學(xué)生進(jìn)一步感受函數(shù)是反映現(xiàn)實(shí)世界中變量關(guān)系的一種有效數(shù)學(xué)模型,逐步從對具體反比例函數(shù)的感性認(rèn)識上升到對抽象的反比例函數(shù)概念的理性認(rèn)識. 同時本節(jié)的學(xué)習(xí)內(nèi)容,直接關(guān)系到本章后續(xù)內(nèi)容的學(xué)習(xí),也是繼續(xù)學(xué)習(xí)其它各類函數(shù)的基礎(chǔ),其中蘊(yùn)涵的類比、歸納、對應(yīng)和函數(shù)的數(shù)學(xué)思想方法,對學(xué)生今后研究問題、解決問題以及終身的發(fā)展都是非常有益的.基于以上分析,本節(jié)教學(xué)設(shè)計是建立在一個個數(shù)學(xué)活動的基礎(chǔ)上,經(jīng)過對情境理解、本質(zhì)抽象的積累而形成的.讓學(xué)生對一類問題情境中兩個變量間的關(guān)系,在充分經(jīng)歷寫表達(dá)式,計算函數(shù)值和觀察函數(shù)值隨自變量變化規(guī)律的過程中,逐步概括形成反比例函數(shù)的概念.針對教學(xué)實(shí)際,我選取了貼學(xué)生現(xiàn)實(shí)的,有價值的實(shí)例“文具店里買學(xué)習(xí)用品”和“剪面積為定值的長方形紙片”等作為問題情境.
課題名稱4.1實(shí)數(shù)指數(shù)冪授課班級 授課時間13機(jī)電1課題序號 授課課時第 到 授課形式啟發(fā)、類比使用教具課件教學(xué)目的1.識記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分?jǐn)?shù)指數(shù)冪的定義,會進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的互化。 3.識記有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),會進(jìn)行簡單的有理數(shù)指數(shù)冪的運(yùn)算。教學(xué)重點(diǎn)有理數(shù)指數(shù)冪的運(yùn)算、實(shí)數(shù)指數(shù)冪的綜合運(yùn)算教學(xué)難點(diǎn)有理數(shù)指數(shù)冪的運(yùn)算、實(shí)數(shù)指數(shù)冪的綜合運(yùn)算更新、補(bǔ) 充、刪減 內(nèi)容無課外作業(yè) 1.P 96 習(xí)題。 授課主要內(nèi)容或板書設(shè)計實(shí)數(shù)指數(shù)冪 概念 思考交流 例題 課堂小結(jié) 問題解決 練習(xí) 教學(xué)后記
【課題】1.1 集合的概念【教學(xué)目標(biāo)】1、理解集合、元素的概念及其關(guān)系,掌握常用數(shù)集的字母表示;2、掌握集合的列舉法與描述法,會用適當(dāng)?shù)姆椒ū硎炯希?、通過集合語言的學(xué)習(xí)與運(yùn)用,培養(yǎng)分類思維和有序思維,從而提升數(shù)學(xué)思維能力.4、接受集合語言,經(jīng)歷利用集合語言描述元素與集合間關(guān)系的過程,養(yǎng)成規(guī)范意識,發(fā)展嚴(yán)謹(jǐn)?shù)淖黠L(fēng)?!窘虒W(xué)重點(diǎn)】集合的表示法. 【教學(xué)難點(diǎn)】集合表示法的選擇與規(guī)范書寫.【教學(xué)設(shè)計】(1)通過生活中的實(shí)例導(dǎo)入集合與元素的概念;(2)引導(dǎo)學(xué)生自然地認(rèn)識集合與元素的關(guān)系;(3)針對集合不同情況,認(rèn)識到可以用列舉和描述兩種方法表示集合,然后再對表示法進(jìn)行對比分析,完成知識的升華;(4)通過練習(xí),鞏固知識.(5)依照學(xué)生的認(rèn)知規(guī)律,順應(yīng)學(xué)生的學(xué)習(xí)思路展開,自然地層層推進(jìn)教學(xué).
集合的基本運(yùn)算(1) 一、教學(xué)目標(biāo) 1、 知識與技能 (1)理解并集和交集的含義,會求兩個簡單集合的交集與并集。 (2)能夠使用Venn圖表達(dá)兩個集合的運(yùn)算,體會直觀圖像對抽象概念理解的作用。 2、過程與方法 (1)進(jìn)一步體會類比的作用 。 (2) 進(jìn)一步樹立數(shù)形結(jié)合的思想。 3、情感態(tài)度與價值觀 集合作為一種數(shù)學(xué)語言,讓學(xué)生體會數(shù)學(xué)符號化表示問題的簡潔美。 二、教學(xué)重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn):并集與交集的含義 。 教學(xué)難點(diǎn):理解并集與交集的概念,符號之間的區(qū)別與聯(lián)系。
課 程數(shù)學(xué)章節(jié)內(nèi)容5.1角的概念推廣課程類型新課課時安排2課時指導(dǎo)教師 日期12月2 日學(xué)習(xí)目標(biāo)理解將角度從0°~360°推廣任意角。學(xué)習(xí)重點(diǎn)掌握角的度量、任意角學(xué)習(xí)難點(diǎn)理解象限角、界限角和終邊相同的角回顧(溫故知新)1、角度的概念:什么是角?始邊、終邊、頂點(diǎn)。 問題(順著問題找思路)1、正角.負(fù)角.零角.界限角和第幾象限的角概念?按照逆時針方向旋轉(zhuǎn)所形成的角叫做________,按照_____時針旋轉(zhuǎn)所形成的角叫負(fù)角。當(dāng)射線沒有作任何旋轉(zhuǎn)時,形成的角叫________(結(jié)合圖形講解) 2、在坐標(biāo)系中依次表示390°、30°、-330°,觀察圖像,探討終邊相等的角的特點(diǎn)、有什么關(guān)系?思考如何用集合表示終邊相等的角度?
學(xué)科數(shù)學(xué) 課 題 1.4 充要條件班級 人數(shù) 授課時數(shù) 2 課 型 新授課 周次 授課時間 教 學(xué) 目 的 知識目標(biāo):了解“充分條件”、“必要條件”及“充要條件” 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動,學(xué)生之間的討論分析,加強(qiáng)合作意識。 教學(xué)重點(diǎn)“充分條件”、“必要條件”及“充要條件”.教學(xué)難點(diǎn)符號“”,“”,“”的正確使用. 教 具 教 后 小 結(jié) 學(xué)生是否真正理解有關(guān)知識; 是否能利用知識、技能解決問題; 在知識、技能的掌握上存在哪些問題。
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點(diǎn)】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】 一元二次不等式的解法。【教學(xué)設(shè)計】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時安排】 2課時(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點(diǎn)的坐標(biāo)是什么?(3)當(dāng)y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
【教學(xué)目標(biāo)】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學(xué)習(xí),學(xué)會運(yùn)用變量替換的方法,從而提升計算技能?!窘虒W(xué)重點(diǎn)】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學(xué)難點(diǎn)】 利用變量替換解不等式或.【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *回顧思考 復(fù)習(xí)導(dǎo)入 問題 任意實(shí)數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實(shí)數(shù),有 其幾何意義是:數(shù)軸上表示實(shí)數(shù)的點(diǎn)到原點(diǎn)的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結(jié) 引導(dǎo) 分析 了解 思考 回答 觀察 領(lǐng)會 復(fù)習(xí) 相關(guān) 知識 點(diǎn)為 進(jìn)一 步學(xué) 習(xí)做 準(zhǔn)備 充分 借助 圖像 進(jìn)行 分析
課 程數(shù)學(xué)章節(jié)內(nèi)容 課程類型新課課時安排2課時指導(dǎo)教師 日期12月 7 日學(xué)習(xí)目標(biāo)掌握用弧度表示角度的大小學(xué)習(xí)重點(diǎn)掌握用弧度表示角的方法學(xué)習(xí)難點(diǎn)弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學(xué)內(nèi)容:任意角度的推廣、終邊相等的角的表示方法; 2、已經(jīng)學(xué)過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數(shù),負(fù)角的弧度為_____數(shù),零角的弧度為零。 3、由弧度的定義可知,當(dāng)角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉(zhuǎn)化為弧度制?如何將弧度制轉(zhuǎn)化為角度制?(結(jié)合實(shí)例講解)練習(xí)(通過練習(xí)固要點(diǎn))1、練習(xí)5.2.1; 2、例3;展示(通過展示強(qiáng)能力)(25分鐘)(包括學(xué)生展示回顧、問題、練習(xí)、小組總結(jié)等部分)1、引導(dǎo)各小組展示學(xué)習(xí)成果,在有各小組長指定小組成員展示,結(jié)束后,該組組長須總結(jié)或指定其他成員進(jìn)行總結(jié)。 2、展示過程中,提醒同學(xué)注意老師的板書,或者請老師進(jìn)行總結(jié),或題目的講解。
教學(xué)目標(biāo):知識與能力目標(biāo):1.能夠借助三角函數(shù)的定義及單位圓推導(dǎo)出三角函數(shù)的誘導(dǎo)公式 2.能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角的三角函數(shù)的化簡、求值問題情感目標(biāo):1.通過誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度 2.通過誘導(dǎo)公式探求工程中的合作學(xué)習(xí),培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神; 3. 通過誘導(dǎo)公式的運(yùn)用,培養(yǎng)學(xué)生的劃歸能力,提高學(xué)生分析問題和解決問題的能力。 一導(dǎo)入:二、自學(xué)(閱讀教材第110---112頁,回答下列問題) 在直角坐標(biāo)系下,角的終邊與圓心在原點(diǎn)的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關(guān)于軸的對稱點(diǎn)的特征: 。對于角而言:角關(guān)于軸對稱的角為_______公式二:__________ _________ _________
冪函數(shù)是在繼一次函數(shù)、反比例函數(shù)、二次函數(shù)之后,又學(xué)習(xí)了單調(diào)性、最值、奇偶性的基礎(chǔ)上,借助實(shí)例,總結(jié)出冪函數(shù)的概念,再借助圖像研究冪函數(shù)的性質(zhì).課程目標(biāo)1、理解冪函數(shù)的概念,會畫冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結(jié)合這幾個冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì);3、通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)冪函數(shù);2.邏輯推理:常見冪函數(shù)的性質(zhì);3.數(shù)學(xué)運(yùn)算:利用冪函數(shù)的概念求參數(shù);4.數(shù)據(jù)分析:比較冪函數(shù)大小;5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用冪函數(shù)性質(zhì)、圖像特點(diǎn)解決實(shí)際問題。重點(diǎn):常見冪函數(shù)的概念、圖象和性質(zhì);難點(diǎn):冪函數(shù)的單調(diào)性及比較兩個冪值的大?。?/p>
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實(shí)際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號y=f(x)的理解。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實(shí)踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實(shí)質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實(shí)意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實(shí)際問題,并對給定的函數(shù)模型進(jìn)行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實(shí)際問題.2.了解擬合函數(shù)模型并解決實(shí)際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實(shí)際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)模型解決實(shí)際問題;
本節(jié)通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問題.2.能自建確定性函數(shù)模型解決實(shí)際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問題.重點(diǎn):利用函數(shù)模型解決實(shí)際問題;難點(diǎn):數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.