本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質的探究,培養(yǎng)學生數(shù)形結合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學運算:五點作圖; 5.數(shù)學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結合思想方法的應用.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質. 課程目標1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調區(qū)間;3.數(shù)學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正、余弦函數(shù)的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質; 難點:應用正、余弦函數(shù)的性質來求含有cosx,sinx的函數(shù)的單調性、最值、值域及對稱性.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質. 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調區(qū)間;3.數(shù)學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正切函數(shù)的性質. 重點:能夠利用正切函數(shù)圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
本節(jié)內(nèi)容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。
課程目標
1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用;
2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.
數(shù)學學科素養(yǎng)
1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式;
2.邏輯推理:運用公式解決基本三角函數(shù)式的化簡、證明等問題;
3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.
4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.
重點:兩角和與差的正弦、余弦、正切公式的探究及公式之間的內(nèi)在聯(lián)系;
難點:求值過程中角的范圍分析及角的變換.
教學方法:以學生為主體,小組為單位,采用誘思探究式教學,精講多練。
教學工具:多媒體。
一、 情景導入
我們在初中時就知道 ,,由此我們能否得到大家可以猜想,是不是等于呢?
要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
二、預習課本,引入新課
閱讀課本215-218頁,思考并完成以下問題
1.兩角和與差的正弦、余弦和正切公式是什么(共六組)?
2. 二倍角公式是什么?升冪公式是?降冪公式是?
要求:學生獨立完成,以小組為單位,組內(nèi)可商量,最終選出代表回答問題。
三、新知探究
1.兩角和與差的正弦、余弦和正切公式
sin(αβ)=sin_αcos_βcos_αsin_β;
cos(α?β)=cos_αcos_βsin_αsin_β;
tan(αβ)=.
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin_αcos_α;
cos 2α=cos2_α-sin2_α=2cos2_α-1=1-2sin2_α;
tan 2α=.
提醒:
1.必會結論
(1)降冪公式:cos2 α=,sin2α=.
(2)升冪公式:1+cos 2α=2cos2 α,1-cos 2α=2sin2α.
(3)公式變形:tan αtan β=tan(αβ)(1?tan αtan β).
(4)輔助角公式:asin x+bcos x=sin(x+φ),
其中sin φ=,cos φ= .
2.常見的配角技巧
2α=(α+β)+(α-β),α=(α+β)-β,β=-,α=+,=-等.
四、典例分析、舉一反三
題型一 給角求值
例1 利用和(差)角公式計算下列各式的值.
【答案】(1)(2)0(3).
解題技巧:(利用公式求值問題)
在利用公式解含有非特殊角的三角函數(shù)式的求值問題時,要先把非特殊角轉化為特殊角的差(或同一個非特殊角與特殊角的差),利用公式直接化簡求值,在轉化過程中,充分利用誘導公式,構造出兩角差的余弦公式的結構形式,正確地順用公式或逆用公式求值.
跟蹤訓練一
1.cos 50=( )
A.cos 70cos 20-sin 70sin 20
B.cos 70sin 20-sin 70cos 20
C.cos 70cos 20+sin 70sin 20
D.cos 70sin 20+sin 70cos 20
【答案】C
【解析】 cos 50=cos(70-20)=cos 70cos 20+sin 70sin20.
2.coscos+cossin的值是( )
A.0 B. C. D.
【答案】C
【解析】cos cos+cos sin=cos cos+sin sin=cos=cos.
3. 求值:(1)tan75;(2).
【答案】(1)2+;(2)1.
【解析】(1)tan75=tan(45+30)=====2+.
(2)原式==tan(60-15)=tan45=1.
題型二 給值求值
例2
【答案】
例3
【答案】見解析.
解題技巧:(給值求值的解題策略)
(1)已知某些角的三角函數(shù)值,求另外一些角的三角函數(shù)值,要注意觀察已知角與所求表達式中角的關系,適當?shù)夭鸾桥c湊角.
(2)由于和、差角與單角是相對的,因此解題過程中根據(jù)需要靈活地進行拆角或湊角的變換.常見角的變換有:
①α=(α-β)+β;②α=;③2α=(α+β)+(α-β);
④2β=(α+β)-(α-β).
跟蹤訓練二
1.(1)已知α為銳角,sinα=,β是第四象限角,cosβ=,則sin(α+β)= .
(2)若sin(α-β)cosβ+cos(α-β)sin β=,且α∈,則tan =
【答案】(1)0;(2)
【解析】 (1)∵α為銳角,sin α=,∴cos α=.
∵β是第四象限角,cos β=,∴sin β=-.
∴sin(α+β)=sin αcos β+cos αsin β==0.
(2)由已知得sin[(α-β)+β]=,即sin α=,又因為α∈,
所以cos α=-,于是tan α=-,
故tan.
題型三 給值求角
例4已知tanα=,sinβ=,且α,β為銳角,求α+2β的值.
【答案】.
【解析】 ∵tanα=<1且α為銳角,∴0<α<.
又∵sinβ=<=且β為銳角.
∴0<β<,∴0<α+2β<.①
由sinβ=,β為銳角,得cosβ=,∴tanβ=.
∴tan(α+β)===.
∴tan(α+2β)===1.②
由①②可得α+2β=.
解題技巧:(解決三角函數(shù)給值求角問題的方法步驟)
(1)給值求角問題的步驟.
①求所求角的某個三角函數(shù)值.
②確定所求角的范圍(范圍討論得過大或過小,會使求出的角不合題意或漏解),根據(jù)范圍找出角.
(2)選取函數(shù)的原則.
①已知正切函數(shù)值,選正切函數(shù).
②已知正余弦函數(shù)值,選正弦或余弦函數(shù),若角的范圍是,選正弦或余弦函數(shù)均可;若角的范圍是(0,π),選余弦較好;若角的范圍是,選正弦較好.
跟蹤訓練三
1.若tan α=,tan β=,且α∈,β∈,則α+β的大小等于( )
A. B.
C. D.
【答案】B .
【解析】由已知得tan(α+β)=
==1.
又因為α∈,β∈,
所以α+β∈(π,2π),于是α+β=
題型四 二倍角公式應用
例5
轉載請注明出處!本文地址:
http://www.beckysteam.com/worddetails_77004257.html1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應對。
二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風貌和活力。
今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內(nèi)容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
二是全力推進在談項目落地。認真落實“首席服務官”責任制,切實做好上海中道易新材料有機硅復配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團文旅康養(yǎng)產(chǎn)業(yè)項目、三一重能風力發(fā)電項目、中國供銷集團冷鏈物流項目跟蹤對接,協(xié)調解決項目落戶過程中存在的困難和問題,力爭早日實現(xiàn)成果轉化。三是強化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調度及業(yè)務指導,貫徹落實項目建設“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關要求,通過“比實績、曬單子、亮數(shù)據(jù)、拼項目”,進一步營造“比學趕超”濃厚氛圍,掀起招商引資和項目建設新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務。
(二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
(五)服務群眾提效能方面。一是政府采購服務提檔升級。建成“全區(qū)一張網(wǎng)”,各類采購主體所有業(yè)務實現(xiàn)“一網(wǎng)通辦,提升辦事效率;全面實現(xiàn)遠程開標和不見面開標,降低供應商成本;要求400萬元以上工程采購項目預留采購份額提高至采購比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購榮獲”中國政府采購獎“,并以全國第一的成績獲得數(shù)字政府采購耕耘獎、新聞宣傳獎,以各省中第一的成績獲得年度創(chuàng)新獎。二是財政電子票據(jù)便民利民。全區(qū)財政電子票據(jù)開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領域,全區(qū)241家二級以上公立醫(yī)療機構均已全部上線醫(yī)療收費電子票據(jù),大大解決了群眾看病排隊等待時間長、繳費取票不方便的問題,讓患者”省心、省時、省力“。
一、活動開展情況及成效按照省委、市委對“大學習、大討論、大調研”活動的部署要求,縣委立即行動,于8月20日組織召開常委會會議,專題傳達學習省委X在讀書班上的講話精神。5月2日,縣委召開“大學習、大討論、大調研”活動推進會,及時對活動開展的相關要求、任務進行再安排再部署,會后制定并下發(fā)了活動實施方案、重點課題調研方案、宣傳報道方案等系列文件,有效指導活動開展。5月17日、9月1日,縣委再次召開常委會會議,專題聽取“大學習、大討論、大調研”活動開展情況匯報,研究部署下階段工作。9月13日,召開全縣“大學習大討論大調研”活動工作推進座談會,深入貫徹全省、全市“大學習大討論大調研”活動工作推進座談會精神,總結交流活動經(jīng)驗,對下一階段活動開展進行安排部署?!按髮W習、大討論、大調研”活動的有序開展,為砥礪前行、底部崛起的X注入了強大的精神動力。
1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網(wǎng),2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網(wǎng)招標。