一、教材分析:本節(jié)課選自北京師范大學(xué)教育出版社七年級(jí)上冊(cè)第五章第三節(jié),是學(xué)生學(xué)習(xí)一元一次方程的含義,并掌握了解法后,通過(guò)分析圖形問(wèn)題中的數(shù)量關(guān)系,建立一元一次方程并用之解決實(shí)際問(wèn)題,是學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決生活中實(shí)際問(wèn)題中的典型素材,可提高學(xué)生解決問(wèn)題的能力,提高學(xué)習(xí)數(shù)學(xué)的興趣,形成學(xué)以致用的思想,認(rèn)識(shí)方程運(yùn)用模型的重要環(huán)節(jié)。二、學(xué)情分析:通過(guò)前幾節(jié)解方程的學(xué)習(xí),學(xué)生已經(jīng)掌握了解、列方程的基本方法,在此過(guò)程中也初步掌握了運(yùn)用方程解決實(shí)際問(wèn)題的一般過(guò)程,基本會(huì)通過(guò)分析簡(jiǎn)單問(wèn)題中已知量與未知量的關(guān)系列出方程解應(yīng)用題,但學(xué)生在列方程解應(yīng)用題時(shí)常常會(huì)遇到從題設(shè)條件中找不到所依據(jù)的等量關(guān)系,或雖能找到等量關(guān)系,但不能列出方程這樣的問(wèn)題,因此,在教師的引導(dǎo)下,通過(guò)學(xué)生親自動(dòng)手制作模型,自主探索在模型變化過(guò)程中的等量關(guān)系,建立方程,從而將圖形問(wèn)題代數(shù)化。
通過(guò)有針對(duì)性的練習(xí),鞏固所學(xué),拓展知識(shí),形成應(yīng)用能力。本環(huán)節(jié)主要是針對(duì)學(xué)生對(duì)本節(jié)內(nèi)容的掌握程度進(jìn)行檢測(cè)反饋。學(xué)生在經(jīng)過(guò)自學(xué)、置疑、解疑、教師點(diǎn)撥后作一套本節(jié)的檢測(cè)題。做完后,教師或?qū)W生給出答案,并給予簡(jiǎn)單解析。教師對(duì)檢測(cè)成績(jī)做以簡(jiǎn)單的統(tǒng)計(jì),了解本節(jié)課的學(xué)習(xí)效果。檢測(cè)題必須精心設(shè)計(jì)與安排,因?yàn)閷W(xué)生在做經(jīng)過(guò)精心安排的檢測(cè)題時(shí),不僅在積極地掌握數(shù)學(xué)知識(shí),而且能獲得進(jìn)行創(chuàng)造性思維的能力。要充分發(fā)揮檢測(cè)題的功能,設(shè)計(jì)檢測(cè)題時(shí)應(yīng)由淺入深、難易適當(dāng)、逐步提高、突出重點(diǎn)與關(guān)鍵、注意題型的搭配。在試題設(shè)計(jì)上,應(yīng)將知識(shí)、素質(zhì)、能力的考查統(tǒng)一起來(lái),既有知識(shí)性、分析性題目,又有應(yīng)用性、直覺(jué)形象性題目。提高創(chuàng)新性題型的比重和難度,少問(wèn)“是什么”,多問(wèn)“為什么”、“對(duì)某些問(wèn)題,你以為如何”等,增強(qiáng)答案的發(fā)散性。
按此規(guī)律,第n個(gè)式子是 。師生活動(dòng):學(xué)生通過(guò)觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結(jié)論。設(shè)計(jì)意圖:進(jìn)一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學(xué)式子表示實(shí)際問(wèn)題中的數(shù)量關(guān)系的簡(jiǎn)潔性、必要性和一般性。(四)鞏固提升問(wèn)題:你能給以上這些式子賦予新的含義嗎?師生活動(dòng):教師舉例說(shuō)明比如:如果p表示我們班的人數(shù),我們班80%的同學(xué)喜歡上數(shù)學(xué)課,那么0.8p 就可以表示我們班喜歡數(shù)學(xué)課的人數(shù)。學(xué)生思考、交流后發(fā)言五、練習(xí)檢測(cè)(1)5箱蘋(píng)果重m kg,每箱重 kg ;(2)一個(gè)數(shù)比a的 倍小5,則這個(gè)數(shù)為 ;(3)全校學(xué)生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購(gòu)買(mǎi)計(jì)算機(jī) x 臺(tái),去年購(gòu)買(mǎi)數(shù)量是前年的2倍,今年購(gòu)買(mǎi)數(shù)量又是去年的2倍,則學(xué)校三年共購(gòu)買(mǎi)計(jì)算機(jī) 臺(tái);(5)某班有a名學(xué)生,現(xiàn)把一批圖書(shū)分給全班學(xué)生閱讀,如果每人分4本,還缺25本,則這批圖書(shū)共 本;(6)一個(gè)兩位數(shù),十位上的數(shù)字為a,個(gè)位上的數(shù)字b,則這個(gè)兩位數(shù)為 .師生活動(dòng):學(xué)生板演,師生共同評(píng)價(jià)總結(jié)注意(5)帶分?jǐn)?shù)化假分?jǐn)?shù)設(shè)計(jì)意圖:進(jìn)一步提高用含有字母的式子表示實(shí)際問(wèn)題中的數(shù)量關(guān)系的能力。
五、課堂設(shè)計(jì)理念本節(jié)課著力體現(xiàn)以下幾個(gè)方面:1、突出問(wèn)題的應(yīng)用意識(shí)。在各個(gè)環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)問(wèn)題,使學(xué)生能圍繞問(wèn)題展開(kāi)討思考、討論,進(jìn)行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識(shí)。讓學(xué)生通過(guò)列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過(guò)合作交流,得出問(wèn)題的不同解法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問(wèn)題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實(shí)際問(wèn)題中的數(shù)量關(guān)系用方程形式表示出來(lái),就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問(wèn)題抽象出方程模型的能力。
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點(diǎn))2.能運(yùn)用“角邊角”“角角邊”判定方法解決有關(guān)問(wèn)題.(難點(diǎn)) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動(dòng):學(xué)生先自主探究出答案,然后再與同學(xué)進(jìn)行交流.教師點(diǎn)撥:顯然僅僅帶①或②是無(wú)法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點(diǎn)一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說(shuō)明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書(shū)設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個(gè)三角形全等,簡(jiǎn)寫(xiě)成“邊角邊”或“SAS”.兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識(shí),從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來(lái)看,學(xué)生對(duì)“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會(huì)正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過(guò)n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對(duì)角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書(shū)設(shè)計(jì)1.邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等,簡(jiǎn)寫(xiě)成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來(lái)看,學(xué)生對(duì)“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問(wèn)題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫(huà)弧,再以B為圓心,以c為半徑畫(huà)弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長(zhǎng),根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個(gè)頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個(gè)頂點(diǎn)),再分別以這條邊的兩個(gè)端點(diǎn)為圓心,以已知線段長(zhǎng)為半徑畫(huà)弧,兩弧的交點(diǎn)即為另一個(gè)頂點(diǎn).三、板書(shū)設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角.作圖時(shí),鼓勵(lì)學(xué)生一邊作圖,一邊用幾何語(yǔ)言敘述作法,培養(yǎng)學(xué)生的動(dòng)手能力、語(yǔ)言表達(dá)能力
探究點(diǎn)三:作中心對(duì)稱圖形如圖,網(wǎng)格中有一個(gè)四邊形和兩個(gè)三角形.(1)請(qǐng)你畫(huà)出三個(gè)圖形關(guān)于點(diǎn)O的中心對(duì)稱圖形;(2)將(1)中畫(huà)出的圖形與原圖形看成一個(gè)整體圖形,請(qǐng)寫(xiě)出這個(gè)整體圖形對(duì)稱軸的條數(shù);這個(gè)整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個(gè)整體圖形的對(duì)稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書(shū)設(shè)計(jì)1.中心對(duì)稱如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱圖形把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形.教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會(huì)識(shí)別中心對(duì)稱圖形的方法,理解中心對(duì)稱圖形的特征.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會(huì)易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯(cuò)誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會(huì)將平方差和完全平方式混淆。這是對(duì)公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運(yùn)用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識(shí)看起來(lái)很簡(jiǎn)單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;
方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);④按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書(shū)設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)平移所得的圖形中,對(duì)應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對(duì)應(yīng)線段平行(或在一條直線上)且相等,對(duì)應(yīng)角相等.3.簡(jiǎn)單的平移作圖教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問(wèn)題抽象成圖形問(wèn)題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.
通常購(gòu)買(mǎi)同一品種的西瓜時(shí),西瓜的質(zhì)量越大,花費(fèi)的錢(qián)越多,因此人們希望西瓜瓤占整個(gè)西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個(gè)西瓜的體積各是多少?(2)西瓜瓤與整個(gè)西瓜的體積比是多少?(3)買(mǎi)大西瓜合算還是買(mǎi)小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個(gè)西瓜的體積是43πR3;(2)西瓜瓤與整個(gè)西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個(gè)西瓜的體積比是(R-d)3R3<1,故買(mǎi)大西瓜比買(mǎi)小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個(gè)物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
解1:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x°則 因?yàn)閚為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因?yàn)?,所以 解2:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個(gè)n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個(gè)頂點(diǎn)可以畫(huà)7條對(duì)角線,則這個(gè)n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個(gè)多邊形的各個(gè)內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計(jì)一個(gè)內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實(shí)現(xiàn)。(填“能”與“不能”)6. 如圖4,要測(cè)量A、B兩點(diǎn)間距離,在O點(diǎn)打樁,取OA的中點(diǎn) C,OB的中點(diǎn)D,測(cè)得CD=30米,則AB=______米.
例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學(xué)回家后,問(wèn)爸爸媽媽小牛隊(duì)與太陽(yáng)隊(duì)籃球比賽的結(jié)果.爸爸說(shuō):“本場(chǎng)比賽太陽(yáng)隊(duì)的納什比小牛隊(duì)的特里多得了12分.”媽媽說(shuō):“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說(shuō):“如果特里得分超過(guò)20分,則小牛隊(duì)贏;否則太陽(yáng)隊(duì)贏.”請(qǐng)你幫小明分析一下.究竟是哪個(gè)隊(duì)贏了,本場(chǎng)比賽特里、納什各得了多少分?例4 暑假期間,兩名家長(zhǎng)計(jì)劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報(bào)價(jià)均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長(zhǎng)全額收費(fèi),學(xué)生都按七折收費(fèi);乙旅行社的優(yōu)惠條件是家長(zhǎng)、學(xué)生都按八折收費(fèi).假設(shè)這兩位家長(zhǎng)帶領(lǐng)x名學(xué)生去旅游,他們應(yīng)該選擇哪家旅行社?
1.知識(shí)目標(biāo):在回顧與思考中建立本章的知識(shí)框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標(biāo):進(jìn)一步體會(huì)證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進(jìn)一步掌握綜合法的證明方法,結(jié)合實(shí)例體會(huì)反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語(yǔ)言表達(dá)論證過(guò)程的能力.3.情感價(jià)值觀要求通過(guò)積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣.重點(diǎn):通過(guò)例題的講解和課堂練習(xí)對(duì)所學(xué)知識(shí)進(jìn)行復(fù)習(xí)鞏固難點(diǎn):本章知識(shí)的綜合性應(yīng)用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個(gè)內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關(guān)系:現(xiàn)在已存有55元,計(jì)劃從現(xiàn)在起以后每個(gè)月節(jié)省20元.若此學(xué)生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關(guān)系時(shí),要找準(zhǔn)題中表示不等關(guān)系的兩個(gè)量,并用代數(shù)式表示;正確理解題中的關(guān)鍵詞,如負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過(guò)、至少、至多等的含義.三、板書(shū)設(shè)計(jì)1.不等式的概念2.列不等式(1)找準(zhǔn)題目中不等關(guān)系的兩個(gè)量,并且用代數(shù)式表示;(2)正確理解題目中的關(guān)鍵詞語(yǔ)的確切含義;(3)用與題意符合的不等號(hào)將表示不等關(guān)系的兩個(gè)量的代數(shù)式連接起來(lái);(4)要正確理解常見(jiàn)不等式基本語(yǔ)言的含義.本節(jié)課通過(guò)實(shí)際問(wèn)題引入不等式,并用不等式表示數(shù)量關(guān)系.要注意常用的關(guān)鍵詞的含義:負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過(guò),這些關(guān)鍵詞中如果含有“不”“非”等文字,一般應(yīng)包括“=”,這也是學(xué)生容易出錯(cuò)的地方.
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡(jiǎn)不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書(shū)設(shè)計(jì)1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會(huì)到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來(lái)的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵(lì)學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
教學(xué)效果:部分學(xué)生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識(shí)與解決生活中的實(shí)際問(wèn)題等基本技能.第六環(huán)節(jié) 課后練習(xí)四、教學(xué)反思數(shù)學(xué)來(lái)源于生活,并應(yīng)用于生活,讓學(xué)生用數(shù)學(xué)的眼光觀察生活,除了用所學(xué)的數(shù)學(xué)知識(shí)解決一些生活問(wèn)題外,還可以從數(shù)學(xué)的角度來(lái)解釋生活中的一些現(xiàn)象,面向生活是學(xué)生發(fā)展的“源頭活水”.在解決實(shí)際生活問(wèn)題的實(shí)例選擇上,我們盡量選擇學(xué)生熟悉的實(shí)例,如:學(xué)生身邊的事,購(gòu)物,農(nóng)業(yè),工業(yè)等方面,讓學(xué)生真切地理解數(shù)學(xué)來(lái)源于生活這一事實(shí)。有些學(xué)生對(duì)應(yīng)用題有一種心有余悸的感覺(jué),其關(guān)鍵是面對(duì)應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學(xué)中,如果采用列表的方法可幫助學(xué)生審題、找到等量關(guān)系,從而學(xué)會(huì)分析問(wèn)題??赡軐W(xué)生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學(xué)生從一些簡(jiǎn)單、類似的問(wèn)題中模仿老師的分析方法,然后在練習(xí)中讓學(xué)生悟出解決問(wèn)題的竅門(mén),學(xué)會(huì)舉一反三,最后達(dá)到能獨(dú)立解決問(wèn)題的目的。
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過(guò)分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來(lái)解決這類問(wèn)題.三、板書(shū)設(shè)計(jì)1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項(xiàng)式必須是二項(xiàng)式,兩項(xiàng)都能寫(xiě)成平方的形式,且符號(hào)相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通常考慮應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.
解:設(shè)另一個(gè)因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個(gè)因式為2x2+x-3.方法總結(jié):因?yàn)檎降某朔ê头纸庖蚴交槟孢\(yùn)算,所以分解因式后的兩個(gè)因式的乘積一定等于原來(lái)的多項(xiàng)式.三、板書(shū)設(shè)計(jì)1.因式分解的概念把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運(yùn)算.本課是通過(guò)對(duì)比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過(guò)對(duì)比學(xué)習(xí)加深對(duì)新知識(shí)的理解.教學(xué)時(shí)采用新課探究的形式,鼓勵(lì)學(xué)生參與到課堂教學(xué)中,以興趣帶動(dòng)學(xué)習(xí),提高課堂學(xué)習(xí)效率.