一、教材的地位與作用 本節(jié)主要學(xué)習(xí)一元一次不等式組及其解集的概念,并要求學(xué)生會(huì)用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學(xué)習(xí),也是一種基本的數(shù)學(xué)模型,也為下節(jié)和今后解決實(shí)際生產(chǎn)和生活問題奠定了堅(jiān)實(shí)的知識(shí)基礎(chǔ)。另外,整個(gè)學(xué)習(xí)的過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)學(xué)思想會(huì)一直影響著學(xué)生今后數(shù)學(xué)的學(xué)習(xí)。二、學(xué)情分析從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點(diǎn)來(lái)說,學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡(jiǎn)單的實(shí)際問題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化歸能力。但學(xué)生將兩個(gè)一元一次不等式的解集在同一數(shù)軸上表示會(huì)產(chǎn)生一定的困惑。這個(gè)年齡段的學(xué)生,以感性認(rèn)識(shí)為主,并向理性認(rèn)知過渡,所以,本節(jié)課的設(shè)計(jì)是通過學(xué)生所熟悉的問題情境,讓學(xué)生獨(dú)立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
通過與學(xué)生講解切線長(zhǎng)定義,讓學(xué)生在參與、合作中有一個(gè)猜想,再進(jìn)一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學(xué)的方法加以證明。問題的解決,使學(xué)生既能解決新的問題,同時(shí)應(yīng)用到全等、切線的性質(zhì)等知識(shí),同時(shí)三條輔助線中,兩條運(yùn)用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語(yǔ)言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學(xué)習(xí)學(xué)生們已經(jīng)對(duì)切線長(zhǎng)定理有了較深刻的了解。為了加深學(xué)生對(duì)定理的認(rèn)識(shí)并培養(yǎng)學(xué)生的應(yīng)用意識(shí)學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨(dú)立完成,加深對(duì)切線長(zhǎng)定理的理解,老師進(jìn)行點(diǎn)評(píng),對(duì)于例2,由師生共同分析完成,交進(jìn)行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個(gè)層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識(shí)體系中,使學(xué)生的知識(shí)體系得到補(bǔ)充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識(shí)成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識(shí)。
活動(dòng)6:通過隨堂小測(cè)的方式辨別圓的相關(guān)概念。目的:讓學(xué)生準(zhǔn)確地掌握直徑與弦,弧與半圓的關(guān)系,以及準(zhǔn)確理解等圓和等弧的概念?;顒?dòng)7:讓學(xué)生分組討論“投圈游戲”,解決生活中的實(shí)際問題。目的:提高學(xué)生運(yùn)用所學(xué)圓的知識(shí),解決實(shí)際問題的能力;也是為了鞏固圓的定義,同時(shí)再次激發(fā)學(xué)生的學(xué)習(xí)興趣。活動(dòng)8:給學(xué)生一個(gè)草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學(xué)生的綜合運(yùn)用能力,并鞏固圓的定義?;顒?dòng)9:讓學(xué)生根據(jù)樹木的年輪的直徑和生長(zhǎng)年齡,計(jì)算樹木每年的生長(zhǎng)情況。目的:鞏固圓的知識(shí)?;顒?dòng)10:讓學(xué)生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關(guān)元素的概念,便于識(shí)記、理解和運(yùn)用。后者的目的是:第一題,檢測(cè)學(xué)生的動(dòng)手能力和提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;第二題,檢測(cè)學(xué)生對(duì)本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測(cè)學(xué)生的綜合運(yùn)用能力。以上是我對(duì)本節(jié)課內(nèi)容的理解和設(shè)計(jì)。
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
由于任何一個(gè)一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對(duì)應(yīng)的觀點(diǎn)考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識(shí):⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個(gè)角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動(dòng)”―――學(xué)生動(dòng)口說,動(dòng)腦想,動(dòng)手做,親身經(jīng)歷知識(shí)發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動(dòng)手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計(jì)力求做到與學(xué)生的生活實(shí)際聯(lián)系緊一點(diǎn),直觀多一點(diǎn),動(dòng)手多一點(diǎn),使學(xué)生興趣高一點(diǎn),自信心強(qiáng)一點(diǎn),使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個(gè)教學(xué)過程中,滲透用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證思想。
3、情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生的觀察、分析和抽象概括能力,體會(huì)教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對(duì)數(shù)學(xué)的好奇心。(三)教學(xué)重難點(diǎn)根據(jù)以上分析,結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的思維特點(diǎn),我將本節(jié)課的教學(xué)重點(diǎn)確立為引導(dǎo)學(xué)生認(rèn)識(shí)倍數(shù)與因數(shù),能在1——100的自然數(shù)中,找出10以內(nèi)某個(gè)自然數(shù)的所有倍數(shù)。而將探索出找一個(gè)數(shù)的倍數(shù)的方法確定為本節(jié)課的教學(xué)難點(diǎn)。二、說學(xué)情五年級(jí)的學(xué)生觀察、分析、概括歸納能力已經(jīng)逐步形成,他們?cè)敢庾约河^察、分析、概括整理,找出規(guī)律。他們?cè)谔剿餍轮R(shí)上,主動(dòng)性比較強(qiáng),同時(shí)他們思維活躍,已具備了一定的探究能力和小組合作意識(shí)。并且學(xué)生在學(xué)習(xí)本節(jié)課之前,學(xué)生學(xué)過整數(shù)的認(rèn)識(shí),能熟練運(yùn)用乘除法運(yùn)算法則解決相應(yīng)的乘除法運(yùn)算,是本節(jié)課學(xué)習(xí)倍數(shù)與因數(shù)相關(guān)內(nèi)容的基礎(chǔ)。
(四)引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)(2)培養(yǎng)學(xué)生觀察--探索--抽象--概括的能力。2.教學(xué)安排(1)提出問題:通過驗(yàn)證這兩組分?jǐn)?shù)確實(shí)相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學(xué)生的觀察結(jié)果是什么,教師要順應(yīng)學(xué)生的思維,針對(duì)學(xué)生的觀察方法,進(jìn)行引導(dǎo)性評(píng)價(jià)①觀察角度的獨(dú)特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導(dǎo)層次一:你發(fā)現(xiàn)了1/2和2/4兩個(gè)數(shù)之間的這樣的規(guī)律,在這個(gè)等式中任意兩個(gè)數(shù)都有這樣的規(guī)律嗎?引導(dǎo)學(xué)生對(duì)1/2和4/8、2/4和4/8每組中兩個(gè)數(shù)之間規(guī)律的觀察。引導(dǎo)層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導(dǎo)層次三:用自己的話把你觀察到的規(guī)律概括出來(lái)。
一、說教材1、教學(xué)內(nèi)容北師大版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)第五單元的第一課時(shí)《分?jǐn)?shù)的再認(rèn)識(shí)(一)》。2、教材分析本課是學(xué)生在三年級(jí)初步認(rèn)識(shí)分?jǐn)?shù)的基礎(chǔ)上,進(jìn)行深入和拓展的。在三年級(jí),學(xué)生已結(jié)合情境和直觀操作,體驗(yàn)了分?jǐn)?shù)產(chǎn)生的過程,認(rèn)識(shí)了整體“1”,初步了解了分?jǐn)?shù)的意義,能認(rèn)、讀、寫一些簡(jiǎn)單的分?jǐn)?shù)。本節(jié)課是在此基礎(chǔ)上,進(jìn)一步引導(dǎo)學(xué)生認(rèn)識(shí)和理解分?jǐn)?shù),為后面進(jìn)一步學(xué)習(xí)、運(yùn)用分?jǐn)?shù)知識(shí)做好鋪墊。本課的課題是《分?jǐn)?shù)的再認(rèn)識(shí)》,這個(gè)“再認(rèn)識(shí)”,我想應(yīng)該有兩方面的含義,一是進(jìn)一步認(rèn)識(shí)、理解分?jǐn)?shù)的意義,二是結(jié)合具體的情境,讓學(xué)生體會(huì)“整體”與“部分”的關(guān)系,體會(huì)“整體不同,同一個(gè)分?jǐn)?shù)所對(duì)應(yīng)的數(shù)量也不同”,從而體驗(yàn)數(shù)學(xué)知識(shí)形成的全過程。3、教學(xué)目標(biāo)根據(jù)教學(xué)內(nèi)容和學(xué)生的認(rèn)知能力,我將本節(jié)課的教學(xué)目標(biāo)制定如下:
(1) 討論——選擇。教師精心安排了兩個(gè)環(huán)節(jié),一是讓學(xué)生討論、選擇一個(gè)喜歡的分?jǐn)?shù)作為研究對(duì)象,二是讓學(xué)生討論、選擇不同的實(shí)驗(yàn)材料,確定不同的驗(yàn)證方法,然后全班匯報(bào)。教師給每組準(zhǔn)備了一個(gè)材料籃,里面裝著計(jì)算器、鐘表、數(shù)張紙、線段圖、彩筆、直尺等。各小組經(jīng)過熱烈的討論標(biāo)新立異地選擇了不同的分?jǐn)?shù)作為研究對(duì)象、選擇不同的材料作為實(shí)驗(yàn)器材,一個(gè)個(gè)躍躍欲試。學(xué)生可能會(huì)選擇折紙涂色、畫線段圖、用計(jì)算器計(jì)算、看直尺、看鐘面等不同的方法去證明兩個(gè)分?jǐn)?shù)是否相等。設(shè)計(jì)意圖:這樣設(shè)計(jì),既是為后面的實(shí)驗(yàn)做好準(zhǔn)備,避免學(xué)生出現(xiàn)盲目行動(dòng),同時(shí)也是為學(xué)生探究方法的多元化創(chuàng)造條件。(2)實(shí)驗(yàn)——記錄:各組拿出實(shí)驗(yàn)報(bào)告,開始做實(shí)驗(yàn),并記錄實(shí)驗(yàn)結(jié)果。(3)匯報(bào)——交流:分組在實(shí)物投影儀上,展示實(shí)驗(yàn)報(bào)告,說明驗(yàn)證方法。學(xué)生可能會(huì)出現(xiàn)多種多樣的實(shí)驗(yàn)報(bào)告。(投影)
1、走進(jìn)課堂、匯報(bào)總結(jié)因?yàn)槭穷A(yù)習(xí)后的課,所以我直接問“昨天老師布置了預(yù)習(xí)作業(yè),你都學(xué)會(huì)了什么”從孩子們掌握的知識(shí)切入,進(jìn)行新授。讓學(xué)生總結(jié)出2、5的倍數(shù)的特征,奇數(shù)與偶數(shù)的概念,以及既是2的倍數(shù),又是5的倍數(shù)的特征。二、嘗試練習(xí)檢驗(yàn)學(xué)生預(yù)習(xí)效果,這是數(shù)學(xué)預(yù)習(xí)不可缺少的過程。數(shù)學(xué)學(xué)科有別于其他學(xué)科的一大特點(diǎn)就是要用數(shù)學(xué)知識(shí)解決問題。學(xué)生經(jīng)過自己的努力初步理解和掌握了新的數(shù)學(xué)知識(shí),要讓學(xué)生通過做練習(xí)或解決簡(jiǎn)單的問題來(lái)檢驗(yàn)自己預(yù)習(xí)的效果。既能讓學(xué)生反思預(yù)習(xí)過程中的漏洞,又能讓老師發(fā)現(xiàn)學(xué)生學(xué)習(xí)新知識(shí)時(shí)較集中的問題,以便課堂教學(xué)時(shí)抓住重、難點(diǎn)。因?yàn)槭穷A(yù)習(xí)之后的課,所以練習(xí)題的難度比較高,安排了不同難度的練習(xí)題來(lái)鞏固新知識(shí)。三、設(shè)置下節(jié)課預(yù)習(xí)任務(wù)設(shè)置下節(jié)課的預(yù)習(xí)任務(wù),是進(jìn)行下節(jié)課內(nèi)容的鋪墊,讓孩子們按著一定的方案有計(jì)劃、有目標(biāo)地對(duì)下節(jié)課進(jìn)行預(yù)習(xí),以便下節(jié)課的教學(xué)活動(dòng)。
一個(gè)數(shù)各個(gè)位上的數(shù)字之和如果是3的倍數(shù),那么,這個(gè)數(shù)一定是3的倍數(shù)。否則,這個(gè)數(shù)就不是3的倍數(shù)。4、檢驗(yàn)結(jié)論。(1)我們從100以內(nèi)的數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?(2)利用100以內(nèi)數(shù)表來(lái)驗(yàn)證。(3)延伸到三位數(shù)或更大的數(shù)。如:573、753、999、1236、2244、7863……(4)學(xué)生自己寫數(shù)并驗(yàn)證,然后小組交流,觀察得出的結(jié)論是否相同。在本環(huán)節(jié),我用充足的時(shí)間讓小組代表上講臺(tái)展示成果,說出各自的思考過程,對(duì)學(xué)生的回答我給予充分的肯定和表?yè)P(yáng),引導(dǎo)學(xué)生驗(yàn)證自己的發(fā)現(xiàn)是否正確,最后達(dá)成共識(shí):一個(gè)數(shù)的各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就3的倍數(shù)(板書)。這樣便巧妙地突出本課的重點(diǎn),突破了本課的難點(diǎn)。
反思本課的教學(xué)過程,我有以下幾點(diǎn)認(rèn)識(shí):1、重視學(xué)生的經(jīng)驗(yàn)和體驗(yàn),發(fā)展數(shù)感建構(gòu)主義的學(xué)生觀認(rèn)為,學(xué)習(xí)不是教師把知識(shí)簡(jiǎn)單地傳遞給學(xué)生,而是學(xué)生自己建構(gòu)知識(shí)的過程。在學(xué)習(xí)過程中,學(xué)生不是被動(dòng)地接受信息,而是以原有知識(shí)經(jīng)驗(yàn)為基礎(chǔ),主動(dòng)地建構(gòu)知識(shí)的意義。2、關(guān)注學(xué)生的思維,給學(xué)生較大的學(xué)習(xí)空間。引導(dǎo)學(xué)生自主探索的關(guān)鍵問題是要給學(xué)生多大的探究空間?我以引導(dǎo)學(xué)生自主探索作為根本出發(fā)點(diǎn),設(shè)計(jì)具有較大探究問題的空間,如“你發(fā)現(xiàn)了什么?你有什么問題?”等,學(xué)生們結(jié)合直觀圖的觀察,逐步發(fā)現(xiàn)分子比分母小的分?jǐn)?shù)可以在一個(gè)單位“1”中表示,并且小于1;3.本節(jié)課最大的不足之處就是由于時(shí)間觀念,把一節(jié)課的內(nèi)容分開了,比如在教學(xué)中加入畫一畫內(nèi)容可以加深學(xué)生從部分到整體的思維,使學(xué)生更近一步理解分?jǐn)?shù)。
1.教學(xué)內(nèi)容:本課是北師大版第三單元《分?jǐn)?shù)》:《找最小公倍數(shù)》第一課時(shí)。是引導(dǎo)學(xué)生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認(rèn)識(shí)并建立并理解公倍數(shù)和最小公倍數(shù)的概念的過程。并總結(jié)歸納出一些找最小公倍數(shù)的方法。2.教材編寫意圖:五年級(jí)學(xué)生的生活經(jīng)驗(yàn)和知識(shí)背景比較豐富,新課程標(biāo)準(zhǔn)要求教材選擇具有現(xiàn)實(shí)性和趣味性的素材,采取螺旋上升的方式,由淺入深地促使學(xué)生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。在此之前,學(xué)生已經(jīng)了解了整除、倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)。通過寫出幾個(gè)數(shù)的倍數(shù),找出公有的倍數(shù),再?gòu)墓械谋稊?shù)中找出最小的一個(gè),從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出兩個(gè)數(shù)的倍數(shù),以及這兩個(gè)數(shù)公有的倍數(shù),這一內(nèi)容的學(xué)習(xí)也為今后的通分、約分學(xué)習(xí)打下的基礎(chǔ),具有科學(xué)的、嚴(yán)密的邏輯性。(二)對(duì)教材的處理意見1.教材中讓學(xué)生找4和6的倍數(shù),進(jìn)而引出公倍數(shù)和最小公倍數(shù)的概念,利于學(xué)生建立對(duì)概念的理解。
今天我說課的內(nèi)容是:小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)第五單元“2—5的乘法口訣”的第5課時(shí)《回家路上》。本節(jié)課是在已有知識(shí)與經(jīng)驗(yàn)的基礎(chǔ)上,讓學(xué)生進(jìn)一步體驗(yàn)乘法,掌握“用2-5的乘法口訣解決問題”,意在培養(yǎng)學(xué)生建立、運(yùn)用數(shù)學(xué)模型來(lái)解決相關(guān)問題能力,從而讓他們感受到數(shù)學(xué)知識(shí)與生活實(shí)際的聯(lián)系?;谝陨辖虒W(xué)內(nèi)容,我作了如下的教學(xué)設(shè)計(jì):本節(jié)課是在完成了“2---5的乘法口訣”的基礎(chǔ)上,使學(xué)生學(xué)會(huì)“用2-5的乘法口訣”解決問題。以回家路上作為主要線索,并通過以下活動(dòng)實(shí)現(xiàn)教學(xué)目標(biāo)。1、創(chuàng)設(shè)“回家路上”的問題情境,引導(dǎo)學(xué)生提出本節(jié)課的一些數(shù)學(xué)問題。2、通過自主探究,引導(dǎo)學(xué)生建立“用乘法口訣解決問題”的數(shù)學(xué)模型。3、運(yùn)用所建模型,解決相關(guān)問題,并通過練習(xí),讓學(xué)生感受數(shù)學(xué)簡(jiǎn)捷思維的優(yōu)勢(shì)和廣泛應(yīng)用的價(jià)值。
根據(jù)教師之前對(duì)課標(biāo)及本課教材內(nèi)容的分析,教師認(rèn)為本課的教學(xué)重點(diǎn)應(yīng)該是,結(jié)合課間活動(dòng)的具體情境,進(jìn)一步鞏固2和5的乘法口訣,通過圖與式的對(duì)應(yīng),進(jìn)一步理解乘法的意義。教學(xué)難點(diǎn)是發(fā)展學(xué)生對(duì)乘法的認(rèn)識(shí),包含在教學(xué)重點(diǎn)之中。教學(xué)重難點(diǎn)的突破,教師準(zhǔn)備圍繞教材所設(shè)計(jì)的四個(gè)側(cè)重點(diǎn)不同的問題,以教材的第一個(gè)問題——圖與式的對(duì)應(yīng)(數(shù)形結(jié)合、逆向思維)、第二個(gè)問題——根據(jù)數(shù)學(xué)信息解決實(shí)際問題(正向思維),逆正兩種思維方式幫助學(xué)生理解鞏固乘法的意義,同時(shí),在解決教材的第三個(gè)問題“一共有多少盆花”后,幫助學(xué)生初步認(rèn)識(shí)到乘法的局限性——不能解決加數(shù)不相同的幾個(gè)加數(shù)的和。在學(xué)生知道了乘法的能和不能,進(jìn)一步界定了乘法概念的內(nèi)涵后,通過認(rèn)知發(fā)散,找一找自己課間活動(dòng)中能用乘法解決的問題,幫助學(xué)生將對(duì)乘法的認(rèn)知擴(kuò)展到日常生活的應(yīng)用層面,從而達(dá)到其對(duì)乘法的進(jìn)一步理解的目的。同時(shí),隨著這四個(gè)問題的解決,5、2的乘法口訣也在計(jì)算中得到了練習(xí)鞏固。