3.下結論.依據均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.
溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現的所有值,在試驗之前不可能確定取何值;可以用數字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內的一切值隨機變量將隨機事件的結果數量化.3、古典概型:①試驗中所有可能出現的基本事件只有有限個;②每個基本事件出現的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數,結果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數的自變量 隨機變量 連續(xù)型隨機變量 函數可以列表 X123456p 2 4 6 8 10 12
問題二:上述問題中,甲、乙的平均數、中位數、眾數相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據上述數據計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數據的離散程度。由極差發(fā)現甲的成績波動范圍比乙的大。但由于極差只使用了數據中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數據離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
本節(jié)課選自《2019人教A版高中數學選擇性必修第三冊》,第七章《隨機變量及其分布列》,本節(jié)課主本節(jié)課主要學習離散型隨機變量的均值
本節(jié)本部分內容主要包括隨機變量的均值和方差。本節(jié)課是前面學習完隨機變量分布列的基礎上進行研究的,知識上具有著承前啟后的作用。隨機變量的均值和方差是概率論和數理統(tǒng)計的重要概念,節(jié)課是從實際出發(fā),通過抽象思維,建立數學模型,進而認知數學理論,應用于實際的過程
課程目標 | 學科素養(yǎng) |
A.理解離散型隨機變量的均值的意義和性質. B.會根據離散型隨機變量的分布列求出均值. C.會利用離散型隨機變量的均值解決一些相關的實際問題. | 1.數學抽象:離散型隨機變量的均值的概念 2.邏輯推理:離散型隨機變量的均值的性質 3.數學運算:求離散型隨機變量的均值 4.數學建模:模型化思想
|
重點:離散型隨機變量的均值的意義和性質
難點:用離散型隨機變量的均值解決一些相關的實際問題
多媒體
教學過程 | 教學設計意圖 核心素養(yǎng)目標 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
一、問題導學 對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數字特征。例如,要了解某班同學在一次數學測驗中的總體水平,很重要的是看平均分;要了解某班同學數學成績是否“兩極分化”則需要考察這個班數學成績的方差。 我們還常常希望直接通過數字來反映隨機變量的某個方面的特征,最常用的有期望與方差. 二、探究新知 探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數的分布列如下表所示:如何比較他們射箭水平的高低呢?
類似兩組數據的比較,首先比較擊中的平均環(huán)數,如果平均環(huán)數相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數 當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于70.1+80.2+90.3+100.4=9. 即甲射中平均環(huán)數的穩(wěn)定值(理論平均值)為9, 這個平均值的大小可以反映甲運動員的射箭水平. 同理,乙射中環(huán)數的平均值為70.15+80.25+90.4+100.2=8.65. 從平均值的角度比較,甲的射箭水平比乙高. 一、離散型隨機變量取值的平均值. 一般地,若離散型隨機變量X的概率分布為:則稱 為隨機變量X的均值(mean)或數學期望(mathematical expectation),數學期望簡稱期望.均值是隨機變量可能取值關于取值概率的加權平均數,它綜合了隨機變量的取值和取值的概率,反映了隨機變量取值的平均水平.
三、典例解析 例1. 在籃球比賽中,罰球命中1次得1分,不中得0分,如果某運動員罰球命中的概率為0.8,那么他罰球1次的得分X的均值是多少? 分析:罰球有命中和不中兩種可能結果,命中時X=1,不中時X=0,因此隨機變量X服從兩點分布,X的均值反映了該運動員罰球1次的平均得分水平. 解:因為P(X=1)=0.8,P(X=0)=0.2, 所以E(X)=1P(X=1)+0P(X=0)=10.8+00.2 =0.8 即該運動員罰球1次的得分X的均值是0.8. 一般地,如果隨機變量X服從兩點分布, 那么:
例2.拋擲一枚質地均勻的骰子,設出現的點數為X,求X的均值. 分析:先求出X的分布列,再根據定義計算X的均值。 解:X的分布列為??(X=k)=,k=1,2,3,4,5,6 因此,E(X)= (1+2+3+4+5+6)=3.5. 求離散型隨機變量X的均值的步驟: (1)理解X的實際意義,寫出X全部可能取值; (2)求出X取每個值時的概率; (3)寫出X的分布列(有時也可省略); (4)利用定義公式求出均值 跟蹤訓練1.某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內最多有4次參加考試的機會,一旦某次考試通過,即可領取駕照,不再參加以后的考試,否則就一直考到第4次為止.如果李明決定參加駕照考試,設他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9,求在一年內李明參加駕照考試次數X的分布列和X的均值. [解] X的取值分別為1,2,3,4. X=1,表明李明第一次參加駕照考試就通過了, 故P(X=1)=0.6. X=2,表明李明第一次考試未通過, 第二次通過了,故P(X=2)=(1-0.6)0.7=0.28. X=3,表明李明第一、二次考試未通過,第三次通過了, 故P(X=3)=(1-0.6)(1-0.7)0.8=0.096. X=4,表明李明第一、二、三次考試都未通過, 故P(X=4)=(1-0.6)(1-0.7)(1-0.8)=0.024. 所以李明一年內參加考試次數X的分布列為
所以X的均值為E(X)=10.6+20.28+30.096+40.024=1.544. 探究2. 已知X是一個隨機變量,且分布列如下表所示. 設都是實數且,則Y + 也是一個隨機變量,那么,這兩個隨機變量的均值之間有什么聯系呢? 離散型隨機變量的均值的性質 若X,Y是兩個隨機變量,且Y=aX+b,則有E(Y)=aE(X)+b,即隨機變量X的線性函數的均值等于這個隨機變量的均值E(X)的同一線性函數.特別地: (1)當a=0時,E(b)=b,即常數的均值就是這個常數本身. (2)當a=1時,E(X+b)=E(X)+b,即隨機變量X與常數之和的均值等于X的均值與這個常數的和. (3)當b=0時,E(aX)=aE(X),即常數與隨機變量乘積的均值等于這個常數與隨機變量的均值的乘積. 例3:猜歌名游戲是根據歌曲的主旋律制成的鈴聲來猜歌名.某嘉賓參加猜歌名節(jié)目,猜對每首歌曲的歌名相互獨立,猜對三首歌曲A,B,C歌名的概率及猜對時獲得相應的公益基金如下表所示: 規(guī)則如下:按照A,B,C的順序猜,只有猜對當前歌曲的歌名才有資格猜下一首,求嘉賓獲得的公益基金總額X的分布列及均值.
(??=6000)=(??????)=0.80.60.4=0.192. X的分布列如下表所示:
??的均值為??(??)=00.2+10000.32+30000.288+60000.192=2336. 思考:如果改變猜歌的順序,獲得公益基金的均值是否相同?如果不同,你認為哪個順序獲得的公益基金均值最大? 解:如果按ACB的順序來猜歌,分別用A,B,C表示猜對歌曲A,B,C歌名的事件,, (??=6000)=(??CB)=0.80.40.6=0.192. X的分布列如下表所示:
按由易到難的順序來猜歌,獲得的公益基金的均值最大
例4.根據氣象預報,某地區(qū)近期有小洪水的概率為0.25,有大洪水的概率為0.01,該地區(qū)某工地上有一臺大型設備,遇到大洪水時要損失60000元,遇到小洪水時要損失10000元。為保護設備,有以下三種方案: 方案1:運走設備,搬運費為3800元。 方案2:建保護圍墻,建設費為2000元,但圍墻只能擋住小洪水。 方案3:不采取措施,希望不發(fā)生洪水。 工地的領導該如何決策呢? 分析:決策目標為總損失(投入費用與設備損失之和)越小越好,根據題意,各種方案在不同狀態(tài)下的總損失如表所示:
方案2和方案3的總損失都是隨機變量,可以采用期望總損失最小的方案。 解:設方案1、方案2、方案3的總損失分別為X1,X2,X3. 采用方案1,無論有無洪水,都損失3800元.因此,P(X1=3800)=1. 采用方案2,遇到大洪水時,總損失為2000+6000=62000元;沒有大洪水時,總損失為2000元,因此,P(X2=62 000)=0.01,P(X2=2000)=0.99. 采用方案3,P(X3=60 000)=0.01,P(X3=10000)=0.25,P(X3=0)=0.74. 于是,E(X1)=3800, E(X2)=62 0000.01+2 0000.99=2 600, E(X3)=60 0000.01+10 0000.25+00.74=3 100. 因此,從期望損失最小的角度,應采取方案2. 值得注意的是,上述結論是通過比較“期望總損失”而得出的,一般地,我們可以這樣來理解“期望總損失”:如果問題中的天氣狀況多次發(fā)生,那么采用方案2將會使總損失減到最小,不過,因為洪水是否發(fā)生以及洪水發(fā)生的大小都是隨機的,所以對于個別的一次決策,采用方案2也不一定是最好的. |
通過知識回顧,提出問題.
通過具體的問題情境,引發(fā)學生思考積極參與互動,說出自己見解。從而引入離散型隨機變量分布列均值的概念,發(fā)展學生邏輯推理、數學運算、數學抽象和數學建模的核心素養(yǎng)。
通過典例解析,提升對概念精細化的理解。引出兩點分布均值的概念。發(fā)展學生邏輯推理,直觀想象、數學抽象和數學運算的核心素養(yǎng)。
通過典例解析,深化概率的理解。發(fā)展學生邏輯推理,直觀想象、數學抽象和數學運算的核心素養(yǎng)。
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
三、達標檢測 1.若隨機變量X的分布列為
則E(X)=( ) A.0 B.-1 C.- D.- C [E(X)=(-1)+0+1=-.] 2.某射手對靶射擊,直到第一次命中為止,每次命中的概率為0.6,現有4顆子彈,命中后的剩余子彈數目X的數學期望為( ) A.2.44 B.3.376 C.2.376 D.2.4 解析:X的可能取值為3,2,1,0,P(X=3)=0.6; P(X=2)=0.40.6=0.24; P(X=1)=0.420.6=0.096; P(X=0)=0.43=0.064. 所以E(X)=30.6+20.24+10.096+00.064=2.376. 答案:C 3.已知ξ的分布列如下表,若η=3ξ+2,則E(η)= .
解析:因為+t+=1,所以t= E(ξ)=1+2+3 E(η)=E(3ξ+2)=3E(ξ)+2=3+2= 答案: 4.設l為平面上過點(0,1)的直線,l的斜率等可能地取-2,-,-,0,,2用X表示坐標原點到l的距離,則隨機變量X的數學期望E(X)= . |
通過練習鞏固本節(jié)所學知識,通過學生解決問題,發(fā)展學生的數學運算、邏輯推理、直觀想象、數學建模的核心素養(yǎng)。
|
轉載請注明出處!本文地址:
http://www.beckysteam.com/worddetails_60718252.html1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網上和網下輿情應對。
二是深耕意識形態(tài)。加強意識形態(tài)、網絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據市委促進經濟轉型的總要求,聚焦“四個經濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現新的風貌和活力。
今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產業(yè)全域覆蓋。
1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
二是全力推進在談項目落地。認真落實“首席服務官”責任制,切實做好上海中道易新材料有機硅復配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團文旅康養(yǎng)產業(yè)項目、三一重能風力發(fā)電項目、中國供銷集團冷鏈物流項目跟蹤對接,協(xié)調解決項目落戶過程中存在的困難和問題,力爭早日實現成果轉化。三是強化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調度及業(yè)務指導,貫徹落實項目建設“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關要求,通過“比實績、曬單子、亮數據、拼項目”,進一步營造“比學趕超”濃厚氛圍,掀起招商引資和項目建設新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務。
(二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經驗做法,進一步強化內部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
(五)服務群眾提效能方面。一是政府采購服務提檔升級。建成“全區(qū)一張網”,各類采購主體所有業(yè)務實現“一網通辦,提升辦事效率;全面實現遠程開標和不見面開標,降低供應商成本;要求400萬元以上工程采購項目預留采購份額提高至采購比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購榮獲”中國政府采購獎“,并以全國第一的成績獲得數字政府采購耕耘獎、新聞宣傳獎,以各省中第一的成績獲得年度創(chuàng)新獎。二是財政電子票據便民利民。全區(qū)財政電子票據開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領域,全區(qū)241家二級以上公立醫(yī)療機構均已全部上線醫(yī)療收費電子票據,大大解決了群眾看病排隊等待時間長、繳費取票不方便的問題,讓患者”省心、省時、省力“。
一、活動開展情況及成效按照省委、市委對“大學習、大討論、大調研”活動的部署要求,縣委立即行動,于8月20日組織召開常委會會議,專題傳達學習省委X在讀書班上的講話精神。5月2日,縣委召開“大學習、大討論、大調研”活動推進會,及時對活動開展的相關要求、任務進行再安排再部署,會后制定并下發(fā)了活動實施方案、重點課題調研方案、宣傳報道方案等系列文件,有效指導活動開展。5月17日、9月1日,縣委再次召開常委會會議,專題聽取“大學習、大討論、大調研”活動開展情況匯報,研究部署下階段工作。9月13日,召開全縣“大學習大討論大調研”活動工作推進座談會,深入貫徹全省、全市“大學習大討論大調研”活動工作推進座談會精神,總結交流活動經驗,對下一階段活動開展進行安排部署。“大學習、大討論、大調研”活動的有序開展,為砥礪前行、底部崛起的X注入了強大的精神動力。
1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網,2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網招標。