設(shè)計意圖:知識的掌握需要由淺到深,由易到難.我所設(shè)計的三個例題難度依次上升,根據(jù)由簡到難的原則,先讓學(xué)生學(xué)會熟悉選用公式,再進(jìn)一步到公式的變形應(yīng)用,鞏固知識.特別是第三題特別強調(diào)了運用法則的前提:必需要底數(shù)相同.為加深學(xué)生對法則的理解記憶,形成“學(xué)以致用”的思想.同時為了調(diào)動學(xué)生思考,接下來讓學(xué)生進(jìn)入反饋練習(xí)階段,進(jìn)一步鞏固記憶.4、知識反饋,提高反思練習(xí)1(1)口答設(shè)計意圖:根據(jù)夸美紐斯的教學(xué)鞏固性原則,為了培養(yǎng)學(xué)生獨立解決問題的能力,在例題講解后,通過讓個別同學(xué)上黑板演演,其余同學(xué)在草稿本上完成練習(xí)的方式來掌握學(xué)生的學(xué)習(xí)情況,從而對講解內(nèi)容作適當(dāng)?shù)难a充提醒.同時,在活動中引起學(xué)生的好奇心和強烈的求知欲,在獲得經(jīng)驗和策略的同時,獲得良好的情感體驗.
4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學(xué)生對性質(zhì)基本熟悉后安排了四組訓(xùn)練題,為避免學(xué)生應(yīng)用性質(zhì)的粗糙感,以小羊展開競技表演為背景,讓學(xué)生在輕松愉快的氛圍中層層遞進(jìn),不斷深入,達(dá)到強化性質(zhì),拓展性質(zhì)的目的。提高學(xué)生的辨別力;進(jìn)一步增強學(xué)生運用性質(zhì)解決問題的能力;訓(xùn)練學(xué)生的逆向思維能力,增強學(xué)生應(yīng)變能力和解題靈活性.5、提煉小結(jié)完善結(jié)構(gòu)(羊羊總結(jié)會)“通過本節(jié)課的學(xué)習(xí),你在知識上有哪些收獲,你學(xué)到了哪些方法?”引導(dǎo)學(xué)生自主總結(jié)。設(shè)計意圖:使學(xué)生對本節(jié)課所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,能抓住重點進(jìn)行課后復(fù)習(xí)。以及通過對學(xué)習(xí)過程的反思,掌握學(xué)習(xí)與研究的方法,學(xué)會學(xué)習(xí),學(xué)會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)
練習(xí)3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學(xué)知識升華,提升)練習(xí)4、動動腦。(讓學(xué)生進(jìn)一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識技能1四、說課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵學(xué)生用所學(xué)的知識解決身邊的問題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識,有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對新課標(biāo)和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會存在一定的偏差;另外,由于對學(xué)生的認(rèn)知規(guī)律認(rèn)識不夠,所以教學(xué)活動的設(shè)計不一定十分有效。所有這些都有待教學(xué)實踐的檢驗。
教學(xué)不應(yīng)僅僅傳授課本上的知識內(nèi)容,而應(yīng)該在傳授知識內(nèi)容的同時,注意對學(xué)生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運算法則告訴學(xué)生,而是由學(xué)生利用已有知識探究得到.在探究過程中,學(xué)生的數(shù)學(xué)思想得到了進(jìn)一步的拓展,學(xué)生的綜合能力得到了進(jìn)一步的提高.當(dāng)然一節(jié)課的提高并不顯著,但只要堅持這種方式方法,最終會有一個美好的結(jié)果.2.充分挖掘知識內(nèi)涵,使學(xué)生體會數(shù)學(xué)知識間的密切聯(lián)系在教學(xué)中,有意識、有計劃的設(shè)計教學(xué)活動,引導(dǎo)學(xué)生體會單項式乘法與單項式除法之間的聯(lián)系與區(qū)別,感受數(shù)學(xué)的整體性,不斷豐富學(xué)生的解題策略,提高解決問題的能力.3.課堂上應(yīng)當(dāng)把更多的時間留給學(xué)生在課堂教學(xué)中應(yīng)當(dāng)把更多時間交給學(xué)生.本節(jié)課中計算法則的探究,例題的講解,習(xí)題的完成,知識的總結(jié)盡可能的全部由學(xué)生完成,教師所起的作用是點撥,評價和指導(dǎo).這樣做,可以更好的體現(xiàn)以學(xué)生為中心的教學(xué)思想,能更好的提高學(xué)生的綜合能力.
(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達(dá)到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時間?(4)在什么時間范圍內(nèi)溫度在上升?在什么時間范圍內(nèi)溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預(yù)測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當(dāng)體溫達(dá)到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達(dá)到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關(guān)系圖,據(jù)圖回答下列問題:
1.要創(chuàng)造性的使用教材,不拘泥于教材的形式。教材為學(xué)生的學(xué)習(xí)活動提供了基本線索,實施新課程目標(biāo)、實施教學(xué)的重要資源。在教學(xué)中要創(chuàng)造性地使用教材。本節(jié)課教師通過具體的現(xiàn)實情境,充分利用學(xué)生的生活經(jīng)驗,讓學(xué)生體驗到數(shù)學(xué)來源于生活,打破了傳統(tǒng)的注入式的教學(xué)模式,通過一系列精心設(shè)計把它改成學(xué)生所經(jīng)歷的情境引入課題,激發(fā)了學(xué)生的學(xué)習(xí)興趣。在教學(xué)中引導(dǎo)學(xué)生進(jìn)行“猜想一實驗一分析一交流一發(fā)現(xiàn)一應(yīng)用”, 學(xué)生在操作、思考、交流中不斷地發(fā)現(xiàn)問題,解決問題,極大地調(diào)動了學(xué)生的學(xué)習(xí)的積極性,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花,經(jīng)歷了一番前人發(fā)現(xiàn)這個結(jié)果的“濃縮”過程,從而培養(yǎng)了學(xué)生獨立探究和解決問題的能力。2. 相信學(xué)生并為學(xué)生提供充分展示自己的機會通過課堂上小組合作擲硬幣試驗、并展示試驗結(jié)果的過程,為學(xué)生提供展示自己聰明才智的機會,并且在此過程中更利于教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨到見解,以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。
教學(xué)說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應(yīng)用的例子。要解決問題(3),只需要在四邊形中構(gòu)建出三角形結(jié)構(gòu),這樣就可以幫助其穩(wěn)定。設(shè)計意圖:通過學(xué)生動手操作,探究三角形穩(wěn)定性及生活中的應(yīng)用,讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活的辯證思想,感受數(shù)學(xué)美。 (五)總結(jié)反思,情意發(fā)展問題:通過這節(jié)課的學(xué)習(xí)你有什么收獲?多媒體演示:(1)知識方面:①三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應(yīng)用。
經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學(xué)生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導(dǎo),幫助學(xué)生順利突破難點。)及時表揚答對的學(xué)生,因為這個問題整整過了三個世紀(jì),才被意大利著名的天文學(xué)家伽利略解決。后來法國數(shù)學(xué)家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進(jìn)一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),同學(xué)們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現(xiàn)的結(jié)果是有限的。(2)、每一結(jié)果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。
(3)例題1的設(shè)計,一方面是幫助學(xué)生從生實際問題背景中逐步建立古典概型的解題模式;另一方面也可進(jìn)一步理解古典概型的概念與特征,重點突破“等可能性”這個理解的難點。 采用學(xué)生分組討論的方式完。在整個活動中學(xué)生作為活動設(shè)計者、參與者.主持者;老師起到組織和指導(dǎo)的作用。為了讓學(xué)生進(jìn)一步認(rèn)識和理解隨機思想,認(rèn)識和理解概率的含義—概率是一種度量,是對隨機事件發(fā)生可能性大小的一種度量.讓學(xué)生觀察圖表,得出對稱的規(guī)律。預(yù)計學(xué)生在構(gòu)建等可能性事件模型時要花一些時間。(4)例題1的拓展設(shè)計:看學(xué)生能否能在例1的基礎(chǔ)上利用類比的思想來建構(gòu)數(shù)學(xué)模型,并得出求事件 A包含的基本事件數(shù)常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進(jìn)一步的探究前輩們是如何從不考慮順序到想到考慮順序的
一、教材分析1.教材的地位與作用本節(jié)課是在學(xué)生學(xué)習(xí)了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學(xué)習(xí)活動,引導(dǎo)學(xué)生體驗數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)良好的學(xué)習(xí)品質(zhì)。同時這節(jié)課的內(nèi)容也是下一節(jié)學(xué)習(xí)全等三角以及三角形全等的判定的奠基石,它對知識的聯(lián)系起到承上啟下的作用。2.教學(xué)目標(biāo)依據(jù)《課程標(biāo)準(zhǔn)》要求本階段的學(xué)生應(yīng)初步會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實生活中出現(xiàn)的實際問題,體會數(shù)學(xué)與生活的密切聯(lián)系,增進(jìn)對數(shù)學(xué)的理解和學(xué)好數(shù)學(xué)的信心。因此我確立本節(jié)課的教學(xué)目標(biāo)如下:知識技能目標(biāo):通過實例,使學(xué)生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學(xué)生動手操作能力、觀察能力以及合作與交流的能力
一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學(xué)哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學(xué)順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學(xué)們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大小.師:那么哪個量隨哪個量的變化而變化的呢?
說教學(xué)難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學(xué)生的年齡和認(rèn)知特點,教材中“圖形的放大與縮小”從對應(yīng)邊的比相等來進(jìn)行安排,而對應(yīng)角的不變也是形狀不變必備的條件,是學(xué)生體會圖形的相似所必需的。學(xué)生在學(xué)習(xí)的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮???)所以我把“學(xué)生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應(yīng)邊的比相等,對應(yīng)角不變)”做為本節(jié)課的難點。說教法、學(xué)法:通過直觀演示,情景激趣,結(jié)合生活讓學(xué)生形成感性認(rèn)識;引導(dǎo)學(xué)生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學(xué)習(xí)、驗證等過程形成理性認(rèn)識。教學(xué)過程:(略)
Ⅵ.活動與探究某種“15選5”的彩票的獲獎號碼是從1~15這15個數(shù)字小選擇5個數(shù)字(可以重復(fù)),若彩民所選擇的5個數(shù)字恰與獲獎號碼相同,即可獲得特等獎.小明觀察了最近100期獲獎號碼,發(fā)現(xiàn)其中竟有51期有重號(同一期獲獎號碼有2個或2個以上的數(shù)字相同),66期有連號(同一期獲獎號碼中有2個或2個以上的數(shù)字相鄰).他認(rèn)為獲獎號碼不應(yīng)該有這么多重號和連號,獲獎號碼可能不是隨機產(chǎn)生的,有失公允.小明的觀點有道理嗎?重號的概率大約是多少?利用計算器模擬實驗可以估計重號的概率.[過程]兩人組成一個小組,利用計算器產(chǎn)生1~15之間的隨機數(shù).并記錄下來,每產(chǎn)生5個隨機數(shù)為一次實驗,每組做10次實驗,看看有幾次重號和連號.將全班的數(shù)據(jù)匯總集中起來,就可估計出1~15之間的整數(shù)中隨機抽出5個數(shù)出現(xiàn)重號和連號的概率.
在解決問題的過程中,學(xué)生使用到了生活中常見的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺到利用身邊的工具完全可以達(dá)到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會形成主動尋求知識的內(nèi)在動力。學(xué)生在這種學(xué)習(xí)情境中主動學(xué)習(xí)到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問題意識。問題解決后,教師應(yīng)讓學(xué)生從解決的問題出發(fā),通過對題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問題,這樣不僅讓學(xué)生掌握了更多的知識,還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。
(四)提高應(yīng)用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設(shè)計意圖:訓(xùn)練學(xué)生靈活運用知識的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似. 2、在找對應(yīng)角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調(diào)兩個基本圖形,培養(yǎng)學(xué)生養(yǎng)成認(rèn)真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應(yīng)角的方法:①已知角相等;②已知角度計算得出相等的對應(yīng)角;③公共角;④對頂角;⑤同角的余(補)角相等.
接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學(xué)表達(dá)式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對應(yīng)高和對應(yīng)邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書規(guī)范的證明過程。接著問學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對應(yīng)高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學(xué)表達(dá)式和證明方法與命題1類似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個命題。
準(zhǔn)備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復(fù)摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復(fù)聽到消息的可能性是很大的,當(dāng)然重復(fù)感染的可能性也是很大的。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學(xué)的實際應(yīng)用。有兩種解題思路:枚舉法和方程法。
1、通過同位之間互說座位位置,檢測知識目標(biāo)2、3的達(dá)成效果。2、通過導(dǎo)學(xué)案上的探究一,檢測知識目標(biāo)2、3的達(dá)成效果。 3、通過探究二,檢測知識目標(biāo)1、3的達(dá)成效果。 4、通過課堂反饋,檢測總體教學(xué)目標(biāo)的達(dá)成效果。本節(jié)課遵循分層施教的原則,以適應(yīng)不同學(xué)生的發(fā)展與提高,針對學(xué)生回答問題本著多鼓勵、少批評的原則,具體從以下幾方面進(jìn)行評價:1、通過學(xué)生獨立思考、參與小組交流和班級集體展示,教師課堂觀察學(xué)生的表現(xiàn),了解學(xué)生對知識的理解和掌握情況。教師進(jìn)行適時的反應(yīng)評價,同時促進(jìn)學(xué)生的自評與互評。2、通過設(shè)計課堂互說座位、探究一、二及達(dá)標(biāo)檢測題,檢測學(xué)習(xí)目標(biāo)達(dá)成情況,同時有利于學(xué)生完成對自己的評價。3.通過課后作業(yè),了解學(xué)生對本課時知識的掌握情況,同時又能檢測學(xué)生分析解決問題的方法和思路,完成教學(xué)反饋評價。
在第1環(huán)節(jié)基礎(chǔ)上,再讓同學(xué)認(rèn)識到函數(shù)Y=2X-1的圖象與方程2X-Y=1的對應(yīng)關(guān)系,從而把兩個方程組成方程組,讓學(xué)生在理解二元一次方程與函數(shù)對應(yīng)的基礎(chǔ)上認(rèn)識到方程組的解與交點坐標(biāo)的對應(yīng)關(guān)系,從而引出二元一次方程組的圖象解法。3、例題訓(xùn)練,知識系統(tǒng)化通過書上的例1,用作圖象的方法解方程組,讓學(xué)生明白解題步驟與格式,從而規(guī)范理順?biāo)鶎W(xué)的圖象法解方程組,例題由師生合作完成,由學(xué)生說老師寫的方式。4、操作演練、形成技能讓學(xué)生獨立完成書P208隨堂練習(xí),給定時間,等多數(shù)學(xué)生完成后,實物投影其完成情況,并作出分析與評價。5、變式訓(xùn)練,延伸擴展通過讓學(xué)生做收上P208的試一試,而后給一定時間相互交流,并請代表發(fā)言他的所悟,然而老師歸納總結(jié),并讓學(xué)生通過自已嘗試與老師的點拔從“數(shù)”與“形”兩個方面初步體會某些方程組的無解性,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。6、檢測評價,課題作業(yè)