解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標(biāo)為(1,1.4),點B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
【教學(xué)目標(biāo)】(一)教學(xué)知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學(xué)生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們在教學(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標(biāo)系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標(biāo)、開口方向及最高(低)點坐標(biāo).解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標(biāo)為(0,0),開口方向向上,最低點坐標(biāo)為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標(biāo)為(0,0),開口方向向下,最高點坐標(biāo)為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
(3)設(shè)點A的坐標(biāo)為(m,0),則點B的坐標(biāo)為(12-m,0),點C的坐標(biāo)為(12-m,-16m2+2m),點D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當(dāng)a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當(dāng)a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應(yīng)的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動”―――學(xué)生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計力求做到與學(xué)生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學(xué)生興趣高一點,自信心強一點,使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個教學(xué)過程中,滲透用聯(lián)系的觀點看待數(shù)學(xué)問題的辨證思想。
一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點??墒钦f不等式的基本性質(zhì)這個概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗和生活實際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會“從實際問題中抽象出數(shù)學(xué)模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實際問題中,在已有的學(xué)習(xí)經(jīng)驗的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗證”的探索過程,體會“轉(zhuǎn)化”的思想方法,體會數(shù)學(xué)的價值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點。
㈡教學(xué)目標(biāo)⒈知識目標(biāo):①理解同類項的概念,并能辨別同類項;②掌握合并同類項的法則,并能熟練運用.⒉能力目標(biāo):①通過創(chuàng)設(shè)教學(xué)情景,使學(xué)生積極主動地參與到知識的產(chǎn)生過程中,培養(yǎng)學(xué)生的歸納、抽象概括能力;②通過鞏固練習(xí),增強學(xué)生運用數(shù)學(xué)的意識,提高學(xué)生的辨別能力和計算能力.⒊情感目標(biāo):①讓學(xué)生學(xué)會在獨立思考的基礎(chǔ)上積極參與數(shù)學(xué)問題的討論,享受通過運用知識解決問題的成功體驗,增強學(xué)好數(shù)學(xué)的信心;②通過教學(xué),使學(xué)生體驗“由特殊到一般、再由一般到特殊”這一認識規(guī)律,接受辯證唯物主義認識論的教育.
活動6:通過隨堂小測的方式辨別圓的相關(guān)概念。目的:讓學(xué)生準(zhǔn)確地掌握直徑與弦,弧與半圓的關(guān)系,以及準(zhǔn)確理解等圓和等弧的概念?;顒?:讓學(xué)生分組討論“投圈游戲”,解決生活中的實際問題。目的:提高學(xué)生運用所學(xué)圓的知識,解決實際問題的能力;也是為了鞏固圓的定義,同時再次激發(fā)學(xué)生的學(xué)習(xí)興趣?;顒?:給學(xué)生一個草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學(xué)生的綜合運用能力,并鞏固圓的定義。活動9:讓學(xué)生根據(jù)樹木的年輪的直徑和生長年齡,計算樹木每年的生長情況。目的:鞏固圓的知識。活動10:讓學(xué)生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關(guān)元素的概念,便于識記、理解和運用。后者的目的是:第一題,檢測學(xué)生的動手能力和提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;第二題,檢測學(xué)生對本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測學(xué)生的綜合運用能力。以上是我對本節(jié)課內(nèi)容的理解和設(shè)計。
(設(shè)計意圖:讓學(xué)生充分表述自己的想法,強化學(xué)生的應(yīng)用意識,培養(yǎng)學(xué)生解決實際問題的能力。從中發(fā)現(xiàn)可能性會隨著數(shù)量的變化而變化的。)(四)歸納總結(jié),完善認知1、學(xué)生匯報學(xué)習(xí)所得。(使學(xué)生體驗探索成功的喜悅)2、教師評價學(xué)習(xí)態(tài)度。(讓學(xué)生感受學(xué)習(xí)數(shù)學(xué)我能行)五、板書科學(xué)設(shè)計簡單明了,重點突出,加深對所學(xué)知識的理解和掌握。通過以上創(chuàng)新處理,營造寬松的學(xué)習(xí)氛圍,為學(xué)生創(chuàng)造聯(lián)想猜測、動手操作、合作交流、自主探究、解決問題的機會,使學(xué)生在“自主——合作——探究”的學(xué)習(xí)過程中,體驗數(shù)學(xué)探索成功的喜悅,體會到數(shù)學(xué)課堂充滿生命的活力。以上是我對本節(jié)課的一些設(shè)想,還有待于在實踐中去完善,如有不當(dāng)之處,敬請各位專家評委給予批評和指正。
一.說教材我今天說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)北師大版七年級下冊第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學(xué)習(xí)中學(xué)生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語言加以描述,初步具有了有條理的思考和表達的能力,為本節(jié)的深入學(xué)習(xí)奠定了基礎(chǔ)。二.說教學(xué)目標(biāo)本節(jié)課根據(jù)新的教學(xué)理念和學(xué)生需要掌握的知識,確立本節(jié)課的三種教學(xué)目標(biāo):知識與能力目標(biāo):根據(jù)具體情況,能用適當(dāng)?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關(guān)系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標(biāo):經(jīng)歷探索某些圖形中變量之間的關(guān)系的過程,進一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標(biāo):通過研究,學(xué)習(xí)培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關(guān)系的表達,培養(yǎng)數(shù)學(xué)建模能力,增強應(yīng)用意識。
3、情感態(tài)度與價值觀:培養(yǎng)學(xué)生的觀察、分析和抽象概括能力,體會教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學(xué)的好奇心。(三)教學(xué)重難點根據(jù)以上分析,結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的思維特點,我將本節(jié)課的教學(xué)重點確立為引導(dǎo)學(xué)生認識倍數(shù)與因數(shù),能在1——100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù)。而將探索出找一個數(shù)的倍數(shù)的方法確定為本節(jié)課的教學(xué)難點。二、說學(xué)情五年級的學(xué)生觀察、分析、概括歸納能力已經(jīng)逐步形成,他們愿意自己觀察、分析、概括整理,找出規(guī)律。他們在探索新知識上,主動性比較強,同時他們思維活躍,已具備了一定的探究能力和小組合作意識。并且學(xué)生在學(xué)習(xí)本節(jié)課之前,學(xué)生學(xué)過整數(shù)的認識,能熟練運用乘除法運算法則解決相應(yīng)的乘除法運算,是本節(jié)課學(xué)習(xí)倍數(shù)與因數(shù)相關(guān)內(nèi)容的基礎(chǔ)。
一、說教材1、教學(xué)內(nèi)容北師大版小學(xué)數(shù)學(xué)五年級上冊第五單元的第一課時《分?jǐn)?shù)的再認識(一)》。2、教材分析本課是學(xué)生在三年級初步認識分?jǐn)?shù)的基礎(chǔ)上,進行深入和拓展的。在三年級,學(xué)生已結(jié)合情境和直觀操作,體驗了分?jǐn)?shù)產(chǎn)生的過程,認識了整體“1”,初步了解了分?jǐn)?shù)的意義,能認、讀、寫一些簡單的分?jǐn)?shù)。本節(jié)課是在此基礎(chǔ)上,進一步引導(dǎo)學(xué)生認識和理解分?jǐn)?shù),為后面進一步學(xué)習(xí)、運用分?jǐn)?shù)知識做好鋪墊。本課的課題是《分?jǐn)?shù)的再認識》,這個“再認識”,我想應(yīng)該有兩方面的含義,一是進一步認識、理解分?jǐn)?shù)的意義,二是結(jié)合具體的情境,讓學(xué)生體會“整體”與“部分”的關(guān)系,體會“整體不同,同一個分?jǐn)?shù)所對應(yīng)的數(shù)量也不同”,從而體驗數(shù)學(xué)知識形成的全過程。3、教學(xué)目標(biāo)根據(jù)教學(xué)內(nèi)容和學(xué)生的認知能力,我將本節(jié)課的教學(xué)目標(biāo)制定如下:
(四)引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)(2)培養(yǎng)學(xué)生觀察--探索--抽象--概括的能力。2.教學(xué)安排(1)提出問題:通過驗證這兩組分?jǐn)?shù)確實相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學(xué)生的觀察結(jié)果是什么,教師要順應(yīng)學(xué)生的思維,針對學(xué)生的觀察方法,進行引導(dǎo)性評價①觀察角度的獨特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導(dǎo)層次一:你發(fā)現(xiàn)了1/2和2/4兩個數(shù)之間的這樣的規(guī)律,在這個等式中任意兩個數(shù)都有這樣的規(guī)律嗎?引導(dǎo)學(xué)生對1/2和4/8、2/4和4/8每組中兩個數(shù)之間規(guī)律的觀察。引導(dǎo)層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導(dǎo)層次三:用自己的話把你觀察到的規(guī)律概括出來。
(1) 討論——選擇。教師精心安排了兩個環(huán)節(jié),一是讓學(xué)生討論、選擇一個喜歡的分?jǐn)?shù)作為研究對象,二是讓學(xué)生討論、選擇不同的實驗材料,確定不同的驗證方法,然后全班匯報。教師給每組準(zhǔn)備了一個材料籃,里面裝著計算器、鐘表、數(shù)張紙、線段圖、彩筆、直尺等。各小組經(jīng)過熱烈的討論標(biāo)新立異地選擇了不同的分?jǐn)?shù)作為研究對象、選擇不同的材料作為實驗器材,一個個躍躍欲試。學(xué)生可能會選擇折紙涂色、畫線段圖、用計算器計算、看直尺、看鐘面等不同的方法去證明兩個分?jǐn)?shù)是否相等。設(shè)計意圖:這樣設(shè)計,既是為后面的實驗做好準(zhǔn)備,避免學(xué)生出現(xiàn)盲目行動,同時也是為學(xué)生探究方法的多元化創(chuàng)造條件。(2)實驗——記錄:各組拿出實驗報告,開始做實驗,并記錄實驗結(jié)果。(3)匯報——交流:分組在實物投影儀上,展示實驗報告,說明驗證方法。學(xué)生可能會出現(xiàn)多種多樣的實驗報告。(投影)
1、走進課堂、匯報總結(jié)因為是預(yù)習(xí)后的課,所以我直接問“昨天老師布置了預(yù)習(xí)作業(yè),你都學(xué)會了什么”從孩子們掌握的知識切入,進行新授。讓學(xué)生總結(jié)出2、5的倍數(shù)的特征,奇數(shù)與偶數(shù)的概念,以及既是2的倍數(shù),又是5的倍數(shù)的特征。二、嘗試練習(xí)檢驗學(xué)生預(yù)習(xí)效果,這是數(shù)學(xué)預(yù)習(xí)不可缺少的過程。數(shù)學(xué)學(xué)科有別于其他學(xué)科的一大特點就是要用數(shù)學(xué)知識解決問題。學(xué)生經(jīng)過自己的努力初步理解和掌握了新的數(shù)學(xué)知識,要讓學(xué)生通過做練習(xí)或解決簡單的問題來檢驗自己預(yù)習(xí)的效果。既能讓學(xué)生反思預(yù)習(xí)過程中的漏洞,又能讓老師發(fā)現(xiàn)學(xué)生學(xué)習(xí)新知識時較集中的問題,以便課堂教學(xué)時抓住重、難點。因為是預(yù)習(xí)之后的課,所以練習(xí)題的難度比較高,安排了不同難度的練習(xí)題來鞏固新知識。三、設(shè)置下節(jié)課預(yù)習(xí)任務(wù)設(shè)置下節(jié)課的預(yù)習(xí)任務(wù),是進行下節(jié)課內(nèi)容的鋪墊,讓孩子們按著一定的方案有計劃、有目標(biāo)地對下節(jié)課進行預(yù)習(xí),以便下節(jié)課的教學(xué)活動。
一個數(shù)各個位上的數(shù)字之和如果是3的倍數(shù),那么,這個數(shù)一定是3的倍數(shù)。否則,這個數(shù)就不是3的倍數(shù)。4、檢驗結(jié)論。(1)我們從100以內(nèi)的數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?(2)利用100以內(nèi)數(shù)表來驗證。(3)延伸到三位數(shù)或更大的數(shù)。如:573、753、999、1236、2244、7863……(4)學(xué)生自己寫數(shù)并驗證,然后小組交流,觀察得出的結(jié)論是否相同。在本環(huán)節(jié),我用充足的時間讓小組代表上講臺展示成果,說出各自的思考過程,對學(xué)生的回答我給予充分的肯定和表揚,引導(dǎo)學(xué)生驗證自己的發(fā)現(xiàn)是否正確,最后達成共識:一個數(shù)的各位上的數(shù)的和是3的倍數(shù),這個數(shù)就3的倍數(shù)(板書)。這樣便巧妙地突出本課的重點,突破了本課的難點。
1.教學(xué)內(nèi)容:本課是北師大版第三單元《分?jǐn)?shù)》:《找最小公倍數(shù)》第一課時。是引導(dǎo)學(xué)生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認識并建立并理解公倍數(shù)和最小公倍數(shù)的概念的過程。并總結(jié)歸納出一些找最小公倍數(shù)的方法。2.教材編寫意圖:五年級學(xué)生的生活經(jīng)驗和知識背景比較豐富,新課程標(biāo)準(zhǔn)要求教材選擇具有現(xiàn)實性和趣味性的素材,采取螺旋上升的方式,由淺入深地促使學(xué)生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。在此之前,學(xué)生已經(jīng)了解了整除、倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)。通過寫出幾個數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個,從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出兩個數(shù)的倍數(shù),以及這兩個數(shù)公有的倍數(shù),這一內(nèi)容的學(xué)習(xí)也為今后的通分、約分學(xué)習(xí)打下的基礎(chǔ),具有科學(xué)的、嚴(yán)密的邏輯性。(二)對教材的處理意見1.教材中讓學(xué)生找4和6的倍數(shù),進而引出公倍數(shù)和最小公倍數(shù)的概念,利于學(xué)生建立對概念的理解。
反思本課的教學(xué)過程,我有以下幾點認識:1、重視學(xué)生的經(jīng)驗和體驗,發(fā)展數(shù)感建構(gòu)主義的學(xué)生觀認為,學(xué)習(xí)不是教師把知識簡單地傳遞給學(xué)生,而是學(xué)生自己建構(gòu)知識的過程。在學(xué)習(xí)過程中,學(xué)生不是被動地接受信息,而是以原有知識經(jīng)驗為基礎(chǔ),主動地建構(gòu)知識的意義。2、關(guān)注學(xué)生的思維,給學(xué)生較大的學(xué)習(xí)空間。引導(dǎo)學(xué)生自主探索的關(guān)鍵問題是要給學(xué)生多大的探究空間?我以引導(dǎo)學(xué)生自主探索作為根本出發(fā)點,設(shè)計具有較大探究問題的空間,如“你發(fā)現(xiàn)了什么?你有什么問題?”等,學(xué)生們結(jié)合直觀圖的觀察,逐步發(fā)現(xiàn)分子比分母小的分?jǐn)?shù)可以在一個單位“1”中表示,并且小于1;3.本節(jié)課最大的不足之處就是由于時間觀念,把一節(jié)課的內(nèi)容分開了,比如在教學(xué)中加入畫一畫內(nèi)容可以加深學(xué)生從部分到整體的思維,使學(xué)生更近一步理解分?jǐn)?shù)。