解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結(jié)多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結(jié)果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?
1.知識目標:在回顧與思考中建立本章的知識框架圖,復習有關定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標:進一步體會證明的必要性,發(fā)展學生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結(jié)合實例體會反證法的含義;提高學生用規(guī)范的數(shù)學語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學學習活動,對數(shù)學的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學生合作交流的能力,以及獨立思考的良好學習習慣.重點:通過例題的講解和課堂練習對所學知識進行復習鞏固難點:本章知識的綜合性應用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.
【類型二】 根據(jù)數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結(jié)合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關鍵.三、板書設計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通常考慮應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
方法總結(jié):作平移圖形時,找關鍵點的對應點是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質(zhì)確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調(diào)學生自主探索和合作交流,學生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.
中國的拱橋的歷史可追溯到東漢時期,至今已有一千八百多年。中國的拱橋別具一格,造型優(yōu)美,曲線圓潤,形式多樣,世界罕見。拱橋按照建筑材料分為石拱橋、磚拱橋和木拱橋,其中較為常見的是石拱橋。拱橋又分為單拱、雙拱、多拱,拱的多少根據(jù)河面的寬度而定。多拱橋一般正中間的拱較大,兩邊的拱略小。根據(jù)拱的形狀,又分五邊、半圓、尖拱、坦拱。橋面上鋪板,橋邊有欄桿。單孔拱橋的拱形呈拋物線的形狀,如北京頤和園的漢白玉石橋玉帶橋。多孔拱橋適于跨度較大的寬廣水面,常見的多為三、五、七孔,以奇數(shù)為多,偶數(shù)較少。當多孔拱橋某個孔的主拱受荷時,能通過橋墩的變形或拱上結(jié)構(gòu)的作用把荷載由近及遠地傳遞到其他孔主拱上去,這樣的拱橋稱為連續(xù)拱橋,簡稱“聯(lián)拱”。如建于唐代元和年間的古橋蘇州寶帶橋,橋下共有53個孔相連,橋孔之多,結(jié)構(gòu)之精巧,為中外建橋史上所罕見。
(一)說教法本節(jié)課我先出示情境圖,鼓勵學生分析情境中的數(shù)學信息和數(shù)量關系,明確所要解決的問題,然后了解要解決這個問題需要什么樣的條件,進而列出算式。接著討論具體的計算方法。教材中呈現(xiàn)了兩種計算方法。在這個過程中,先讓學生自主進行計算,再組織討論和交流算法之間的聯(lián)系,明白分數(shù)混合運算的順序。通過本節(jié)教學,使學生學會有順序的觀察題、認真審題、分析數(shù)量關系、正確計算、概括總結(jié)、檢查的學習習慣。(二)說學法本節(jié)課是分數(shù)加減法的第二課時,因為前面學習異分母分數(shù)的加減法以及應用異分母加減的知識,因此,大多數(shù)學生對這一類型的加減法已經(jīng)有了一定的計算能力和計算方法,基于此,我在教學中將加減運算的學習和解決問題結(jié)合起來,在加強學生的計算能力的同時,更側(cè)重了學生提出問題和解決問題的能力的訓練,也就是讓學生在經(jīng)歷探索運算方法的過程中,體驗算法多樣化。
二、 教學目標1.理解分數(shù)加減法的算理,掌握分數(shù)加減法的計算方法,并能正確地計算出結(jié)果。2.理解整數(shù)加法的運算定律對分數(shù)加法仍然適用,并會運用這些運算定律進行一些分數(shù)加法的簡便運算,進一步提高簡算能力。 3.體會分數(shù)加減運算在生活、生產(chǎn)中的廣泛應用。三、學情分析五年級的學生已有一定的生活經(jīng)驗,對數(shù)學的神秘感有了更強的好奇心。因此,結(jié)合分數(shù)加減的學習內(nèi)容適當補充一些數(shù)學史料,可使學生的好奇轉(zhuǎn)化為探究欲,促其學習數(shù)學興趣的提高,并逐步形成良好的探究習慣。因此,教學時,應重視教材提供的兩個涉及數(shù)學文化的閱讀材料的學習。在此基礎上,再補充一些相關的學習材料。四、教學重點、難點重點:分數(shù)加減法的計算方法難點:引導學生體會理解不同算法的思路。
五、加工信息,學會表述師:請同學們閱讀課本P122第三題,用自己的話告訴同學,什么是經(jīng)典。課件出示:1.經(jīng)典作品是那些你經(jīng)常聽人家說“我正在重讀……”而不是“我正讀……”的書。2.經(jīng)典作品是這樣一些書,它們對讀過并喜愛它們的人構(gòu)成一種寶貴的經(jīng)驗;但是對那些保留這個機會,等到享受它們的最佳狀態(tài)來臨時才閱讀它們的人,它們也仍然是一種豐富的經(jīng)驗。3.一部經(jīng)典作品是一本每次重讀都好像初讀那樣帶來發(fā)現(xiàn)的書。4.一部經(jīng)典作品是一本即使我們初讀也好像是在重溫我們以前讀過的東西的書。5.一部經(jīng)典作品是一本從不會耗盡它要向讀者說的一切東西的書。6.經(jīng)典作品是這樣一些書,我們越是道聽途說,以為我們懂了,當我們實際讀它們,我們就越是覺得它們獨特、意想不到和新穎。
一、說教材分析 《除數(shù)是整數(shù)的小數(shù)除法》是九年制義務教育第二學段數(shù)與代數(shù)領域的內(nèi)容,是在學生已經(jīng)掌握了整數(shù)除法的意義和計算方法,小數(shù)的意義和性質(zhì)等基礎上進行學習的。本節(jié)課也是整數(shù)除法意義上的進一步擴展,也將為今后學習小數(shù)除以小數(shù)、小數(shù)四則混合運算打下基礎。因此,學生掌握本節(jié)課的內(nèi)容有重要的意義和作用。 二、說學情分析學生已掌握整數(shù)除法、小數(shù)的意義和基本性質(zhì)以及小數(shù)乘法等知識,應充分利用學生的生活經(jīng)驗和已有知識,引導學生探索除數(shù)是整數(shù)的小數(shù)除法的計算方法。 根據(jù)教材內(nèi)容,結(jié)合學生的心理特征和認知結(jié)構(gòu),制定教學目標如下: 1、知識與技能:使學生理解算理;掌握算法并能正確地進行計算。 2、過程與方法:在探究算法的過程中,培養(yǎng)學生的類推能力、分析能力和抽象概括能力。 3、情感態(tài)度和價值觀:使學生體驗所學知識與現(xiàn)實生活的聯(lián)系,能解決生活中簡單問題。
重難點依據(jù)人教版數(shù)學教材新課程標準,在吃透教材的基礎上,我確定了掌握異分母分數(shù)加減法的計算法則為教學重點,因為只有掌握了計算法則,才能進行計算。同時,也確定了理解異分母分數(shù)加減法計算時必須先通分的算理為教學難點。 二、說教法我們都知道數(shù)學是中國教育中一門必修學科,因此,從小學數(shù)學教學開始,就不僅要使學生“知其然”,還要使學生“知其所以然”。我們在以師生既為主體又為客體的原則下,展現(xiàn)獲取理論知識、解決實際問題的思維過程??紤]到五年級學生的現(xiàn)狀,我主要采取設置情景教學法,讓學生積極主動地參與教學活動,使他們在活動中得到認識和體驗,產(chǎn)生踐行的愿望。當然老師自身也是非常重要的教學資源。教師本人應該通過課堂教學感染和激勵學生,調(diào)動起學生參與的積極性,激發(fā)學生對解決實際問題的渴望,并且要培養(yǎng)學生理論聯(lián)系實際的能力,從而達到最佳的教學效果。
1、教材分析《同分母分數(shù)加減法》是人教版五年級下冊第五單元的內(nèi)容。本節(jié)教學內(nèi)容包括分數(shù)加減法的含義、同分母分數(shù)加減法的計算方法和連加、連減三個部分。這部分內(nèi)容是在學生學習整數(shù)、小數(shù)加減法的意義及其計算方法,分數(shù)的意義和性質(zhì),以及在三年級上冊學過的簡單的同分母分數(shù)加減法的基礎上進行教學的。為異分母分數(shù)加減法的學習搭好階梯。2、學情分析相對整數(shù)加減運算而言,分數(shù)的加減運算對于大多數(shù)學生來說是比較困難的,但是學生對簡單的同分母分數(shù)加減法計算有一定基礎。學生已有一定的生活經(jīng)驗,并有一定的分析和解決問題的能力,會有條理地表達自己的思考過程。3、教學目標(1)知識與技能:掌握同分母分數(shù)加減法的計算方法,理解相同單位的數(shù)相加減的算理及含義,并能夠正確熟練地計算。(2)過程與方法:能夠利用所學知識解決生活中的實際問題,培養(yǎng)學生應用知識的能力。(3)情感態(tài)度與價值觀:通過小組合作學習,培養(yǎng)學生的合作意識和學好數(shù)學的信心。
(1) 討論——選擇。教師精心安排了兩個環(huán)節(jié),一是讓學生討論、選擇一個喜歡的分數(shù)作為研究對象,二是讓學生討論、選擇不同的實驗材料,確定不同的驗證方法,然后全班匯報。教師給每組準備了一個材料籃,里面裝著計算器、鐘表、數(shù)張紙、線段圖、彩筆、直尺等。各小組經(jīng)過熱烈的討論標新立異地選擇了不同的分數(shù)作為研究對象、選擇不同的材料作為實驗器材,一個個躍躍欲試。學生可能會選擇折紙涂色、畫線段圖、用計算器計算、看直尺、看鐘面等不同的方法去證明兩個分數(shù)是否相等。設計意圖:這樣設計,既是為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。(2)實驗——記錄:各組拿出實驗報告,開始做實驗,并記錄實驗結(jié)果。(3)匯報——交流:分組在實物投影儀上,展示實驗報告,說明驗證方法。學生可能會出現(xiàn)多種多樣的實驗報告。(投影)
我說課的內(nèi)容是焦老師執(zhí)教的北師大版五年級下冊第三單元《分數(shù)乘法(二)》一課,我將要從七個方面展開說課:說教材、說學情、說教學目標與教學重難點、說教法與學法、說教學過程、說板書設計、說教學效果。一、說教材《分數(shù)乘法(二)》是北師大版小學數(shù)學新課標教材五年級下冊第三單元分數(shù)乘法第二課第一課時的內(nèi)容,它是在學生理解了整數(shù)乘法的意義,分數(shù)的意義,并學會“求幾個幾分之幾是多少?”的基礎上進行教學的。是對《分數(shù)乘法(一)》的拓展和延伸,為進一步學習分數(shù)乘分數(shù),分數(shù)除法和分數(shù)四則混合運算奠定基礎。起著承前啟后的作用。是學習分數(shù)多步計算的關鍵,教材中創(chuàng)設兩個問題情境,通過直觀圖形引導學生利用轉(zhuǎn)化的方法思考,將舊知與新知有機聯(lián)系在一起,應用分數(shù)乘法解決實際問題。
四、說教法學法:本課主要采用知識遷移法、直觀教學法、引導發(fā)現(xiàn)法來教學。課上先復習整數(shù)乘分數(shù),通過已掌握的整數(shù)乘分數(shù)的意義就是表示一個數(shù)的幾分之幾是多少利用知識遷移規(guī)律自然引出1的是1×,1111的就是×,從而得出分數(shù)乘分數(shù)的意義同整數(shù)乘分數(shù)一樣,都表示22221212一個數(shù)的幾分之幾是多少;結(jié)合多媒體直觀演示,進一步幫助學生理解。在探討計算結(jié)果時,讓學生動手折一折,涂一涂,再借助圖形語言動態(tài)直觀演示,幫助學生梳理思維,同時也加深了學生對知識的理解。在方法的總結(jié)上,通過學生對幾個算式的觀察,引導學生發(fā)現(xiàn)分數(shù)乘分數(shù)就用分子相乘的積作分子,分母相乘的積作分母。本節(jié)課學生則主要通過自主探究、合作交流、練習的方法理解并掌握分數(shù)乘分數(shù)的意義及計算方法。五、說教學準備:教師準備多媒體課件、折紙。學生在操作手中有時會產(chǎn)生分歧或者折不出,課件的動態(tài)演示,會有力促進學生的模型建立。