方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過(guò)點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書(shū)設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過(guò)程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長(zhǎng)分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開(kāi)方數(shù)相乘,根指數(shù)不變,如果積含有能開(kāi)得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問(wèn)題的結(jié)果,但不是很準(zhǔn)確.三、板書(shū)設(shè)計(jì)1.二元一次方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過(guò)引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對(duì)應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí),充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
內(nèi)容:情景1:多媒體展示:提出問(wèn)題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過(guò)情景1復(fù)習(xí)公理:兩點(diǎn)之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場(chǎng)景引入,提出問(wèn)題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究?jī)?nèi)容:學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過(guò)點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書(shū)設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問(wèn)題幾何問(wèn)題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過(guò)函數(shù)圖象獲取信息,解決簡(jiǎn)單的實(shí)際問(wèn)題,在函數(shù)圖象信息獲取過(guò)程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題的能力和數(shù)學(xué)應(yīng)用意識(shí).
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問(wèn)題。(難點(diǎn))教學(xué)過(guò)程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問(wèn)題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問(wèn)題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來(lái)水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問(wèn)題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ))來(lái)說(shuō)明兩直線平行.若沒(méi)有公共截線,則需作出兩直線的截線輔助證明.三、板書(shū)設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過(guò)經(jīng)歷探索平行線的判定方法的過(guò)程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
四個(gè)不同類型的問(wèn)題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問(wèn)題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫圖,利用圖象分析問(wèn)題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問(wèn)題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過(guò)大.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問(wèn)題:在一望無(wú)際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說(shuō):“累死我了”,小馬說(shuō):“你還累,這么大的個(gè),才比我多馱2個(gè).”老牛氣不過(guò)地說(shuō):“哼,我從你背上拿來(lái)一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說(shuō):“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問(wèn)題呢?請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù),從而得出二元一次方程.這個(gè)問(wèn)題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程 ,若老牛從小馬背上拿來(lái)1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程: .
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時(shí),易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點(diǎn)二:利用勾股定理求面積如圖,以Rt△ABC的三邊長(zhǎng)為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為_(kāi)_______,陰影部分的面積為_(kāi)_______.解析:因?yàn)锳E=BE,所以S△ABE=12AE·BE=12AE2.又因?yàn)锳E2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因?yàn)锳C2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時(shí),要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來(lái),再利用勾股定理找到圖形面積之間的等量關(guān)系.
(4)從平均分看,兩隊(duì)的平均分相同,實(shí)力大體相當(dāng);從折線的走勢(shì)看,甲隊(duì)比賽成績(jī)呈上升趨勢(shì),而乙隊(duì)比賽成績(jī)呈下降趨勢(shì);從獲勝場(chǎng)數(shù)看,甲隊(duì)勝三場(chǎng),乙隊(duì)勝兩場(chǎng),甲隊(duì)成績(jī)較好;從方差看,甲隊(duì)比賽成績(jī)比乙隊(duì)比賽成績(jī)波動(dòng)小,甲隊(duì)成績(jī)較穩(wěn)定.綜上所述,選派甲隊(duì)參賽更能取得好成績(jī).方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊(duì)的成績(jī),然后從平均數(shù)、方差的角度來(lái)考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書(shū)設(shè)計(jì)數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個(gè)量的探索過(guò)程,通過(guò)實(shí)例體會(huì)用樣本估計(jì)總體的統(tǒng)計(jì)思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過(guò)小組合作,培養(yǎng)學(xué)生的合作意識(shí);通過(guò)解決實(shí)際問(wèn)題,讓學(xué)生體會(huì)數(shù)學(xué)與生活的密切聯(lián)系.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛(ài)國(guó)熱情;(2)學(xué)生加強(qiáng)了對(duì)數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過(guò)讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時(shí)也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對(duì)勾股定理的歷史充滿了濃厚的興趣,同時(shí)也為中國(guó)古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國(guó)數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識(shí)這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問(wèn):通過(guò)這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識(shí)要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對(duì)本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對(duì)勾股定理的歷史的感悟及對(duì)勾股定理應(yīng)用的認(rèn)識(shí)等等.
探究點(diǎn)二:勾股定理的簡(jiǎn)單運(yùn)用如圖,高速公路的同側(cè)有A,B兩個(gè)村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個(gè)出口P,使A,B兩個(gè)村莊到P的距離之和最短,求這個(gè)最短距離和.解析:運(yùn)用“兩點(diǎn)之間線段最短”先確定出P點(diǎn)在A1B1上的位置,再利用勾股定理求出AP+BP的長(zhǎng).解:作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)B′,連接AB′,交A1B1于P點(diǎn),連BP.則AP+BP=AP+PB′=AB′,易知P點(diǎn)即為到點(diǎn)A,B距離之和最短的點(diǎn).過(guò)點(diǎn)A作AE⊥BB′于點(diǎn)E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運(yùn)用幾何知識(shí)正確找到符合條件的P點(diǎn)的位置,會(huì)構(gòu)造Rt△AB′E.三、板書(shū)設(shè)計(jì)勾股定理驗(yàn)證拼圖法面積法簡(jiǎn)單應(yīng)用通過(guò)拼圖驗(yàn)證勾股定理并體會(huì)其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實(shí)際問(wèn)題,學(xué)會(huì)勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).
煤的價(jià)格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費(fèi)用外,還需其他費(fèi)用400元,甲產(chǎn)品每噸售價(jià)4600元;生產(chǎn)1噸乙產(chǎn)品除原料費(fèi)用外,還需其他費(fèi)用500元,乙產(chǎn)品每噸售價(jià)5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤(rùn)為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因?yàn)榈V石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時(shí),那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動(dòng)態(tài)變化的兩個(gè)量;(2)題目中的等量關(guān)系為總利潤(rùn)y=甲產(chǎn)品的利潤(rùn)+乙產(chǎn)品的利潤(rùn).解:(1)因?yàn)?m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時(shí),要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時(shí),一般是求什么,設(shè)什么,并且所列方程的個(gè)數(shù)與未知數(shù)的個(gè)數(shù)相等.解這類問(wèn)題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書(shū)設(shè)計(jì)列方程組,解決問(wèn)題)一般步驟:審、設(shè)、列、解、驗(yàn)、答關(guān)鍵:找等量關(guān)系通過(guò)“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問(wèn)題情景,學(xué)生體會(huì)到數(shù)學(xué)中的“趣”;進(jìn)一步強(qiáng)調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實(shí)際價(jià)值,培養(yǎng)學(xué)生的人文精神;進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗(yàn),激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人合作交流的意識(shí).
8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過(guò)y軸上點(diǎn)C反射后經(jīng)過(guò)點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過(guò)的路線長(zhǎng)是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過(guò)“坐標(biāo)與軸對(duì)稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過(guò)程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。
1.會(huì)用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過(guò)平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開(kāi)方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開(kāi)方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開(kāi)方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對(duì)“6+7”進(jìn)行開(kāi)方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
探究點(diǎn)三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過(guò)一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點(diǎn)在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過(guò)一、三象限,可知-k>0即kx3>x2得y10時(shí),y隨x的增大而增大;k<0時(shí),y隨x的增大而減小.三、板書(shū)設(shè)計(jì)1.函數(shù)與圖象之間是一一對(duì)應(yīng)的關(guān)系;2.作一個(gè)函數(shù)的圖象的一般步驟:列表,描點(diǎn),連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線.經(jīng)歷函數(shù)圖象的作圖過(guò)程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對(duì)應(yīng)關(guān)系.