2.法解二元一次方程組,是提升學生求解二元一次方程的基本技能課,在例題的設置上充分體現(xiàn)化歸思想.2.在學習二元一次方程組的解法中,關鍵是領會其本質思想——消元,體會“化未知為已知”的化歸思想.因而在教學過程中教師通過對問題的創(chuàng)設,鼓勵學生去觀察方程的特點,在過手訓練中提高學生的解答正確率和表達規(guī)范性,提升學生學會數學的信心,激發(fā)學習數學的興趣.3.通過精心設計的問題,引導學生在已有知識的基礎上,自己比較、分析得出二元一次方程組的解法,在鞏固訓練活動中,加深學生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉化為一元一次方程求解,這樣的轉化,不僅有助于學生掌握知識、技能和方法,提高學習效率,而且還加深了對數學中通性和通法的認識,體會學習數學和研究數學的規(guī)律,提升數學思維能力.
1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經過分析、綜合去掉非本質特征,保持本質屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質特征.算術平方根的本質特征就是定義中指出的:“如果一個正數 的平方等于 ,即 ,那么這個正數 就叫做 的算術平方根,”的“正數 ”,即被開方數是正的,由平方的意義, 也是正數,因此算術平方根也必須是正的.當然零的算術平方根是零.
第一環(huán)節(jié)感受生活中的情境,導入新課通過若干圖片,引導學生感受生活中常常需要確定位置.導入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數軸上,確定一個點的位置需要幾個數據呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數軸上找到A點和B點的位置??偨Y得出結論:在直線上, 確定一個點的位置一般需要一個數據.(2)啟新:在平面內,又如何確定一個點的位置呢?請同學們根據生活中確定位置的實例,請談談自己的看法.2.舉例探究Ⅰ. 探究1(1)在電影院內如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內,確定一個座位一般需要幾個數據?結論:生活中常常用“排數”和“號數”來確定位置. Ⅱ. 學有所用(1) 你能用兩個數據表示你現(xiàn)在所坐的位置嗎?
一、 背景與意義分析統(tǒng)計主要研究現(xiàn)實生活中的數據,它通過收集、整理、描述和分析數據來幫助人們對事物的發(fā)展作出合理的判斷,能夠利用數據信息和對數據進行處理已成為信息時代每一位公民必備的素質。通過對本章全面調查和抽樣調查的學習,學生可基本掌握收集和整理數據的方法。二、 學習與導學目標1 知識積累與疏導:通過復習小結,進一步領悟到現(xiàn)實生活中通過數據處理,對未知的事情作出合理的推斷的事實。2 技能掌握與指導:通過復習,進一步明確數據處理的一般過程。3 智能提高與訓導:在與他人交流合作的過程中學會設計調查問卷。4 情感修煉與提高:積極創(chuàng)設情境,參與調查、整理數據,體會社會調查的艱辛與樂趣。5 觀念確認與引導:體會從實踐中來到實踐中去的辨證思想。三、 障礙與生成關注調查問卷的設計及根據調查總結的報告給出合理的預測。四、 學程與導程活動活動一 回顧本章內容,繪制知識結構圖
1、如圖,OA、OB是兩條射線,C是OA上一點,D、E是OB上兩點,則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點到5點30分,時鐘的時針轉過了 度。5、一輪船航行到B處測得小島A的方向為北偏西30°,則從A處觀測此B處的方向為( ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點把線段AD分成2∶4∶3三部分,M是AD的中點,CD=6,求:線段MC的長。9、平面上有n個點(n≥2)且任意三個點不在同一直線上,經過每兩個點畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),那么一共要進行多少場比賽?
16.已知甲組有28人,乙組有20人,則下列調配方法中,能使一組人數為另一組人數的一半的是( ).A.從甲組調12人去乙組 B.從乙組調4人去甲組C.從乙組調12人去甲組 D.從甲組調12人去乙組,或從乙組調4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?( )A.3個 B.4個 C.5個 D.6個三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結:體現(xiàn)了數學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.
方法總結:由絕對值的定義可知,一個數的絕對值越小,離原點越近.將實際問題轉化為數學問題,即為與標準質量的差的絕對值越小,越接近標準質量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數的絕對值總是大于或等于0,即為非負數,若兩個非負數的和為0,則這兩個數同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結:幾個非負數的和為0,則這幾個數都為0.三、板書設計絕對值相反數絕對值性質→|a|=a(a>0)0(a=0)-a(a<0)互為相反數的兩個數的絕對值相等兩個負數比較大?。航^對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數學術語,是本章的重點內容,同時也是一個難點內容.教材從幾何的角度給出絕對值的概念,也就是從數軸上表示數的點的位置出發(fā),得出定義的.
根據題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結:從扇形統(tǒng)計圖中獲取正確的信息是解題的關鍵.語文老師對班上學生的課外閱讀情況做了調查,并請數學老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數占全班人數的百分比.(4)用最喜歡某種書籍的人數比全班的總人數即可得各個百分比,所有的百分比之和為1.方法總結:由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.
在探究估算方法的時候,教師要注重適時的引導,以免讓學生無從下手.在教學過程中一定要讓學生體會估算的實用價值,了解到“數學既來源與生活,又回歸到生活為生活服務”.(二)課堂評價的一些思考在教學中要多鼓勵學生用自己的語言表達他們的想法,在估算的過程中多給予適當的引導和評價,讓學生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學生可能提出不同的看法,有些學生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應該給予肯定,這樣才能激發(fā)學生思考問題的熱情,調動學生探究問題的積極性.作為教師,一定要尊重學生的個體差異,滿足多樣化的學習需要,鼓勵探究方式、表達方式和解題方法的多樣化.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項,求m和n的值.解析:根據同類項的概念,可列出含字母m和n的方程組,從而求出m和n.解:因為xm-n+1y與-2xn-1y3m-2n-5是同類項,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當m=4,n=3時,xm-n+1y與-2xn-1y3m-2n-5是同類項.方法總結:解這類題,就是根據同類項的定義,利用相同字母的指數分別相等,列方程組求字母的值.三、板書設計用加減法解二元一次方程組的步驟:①變形,使某個未知數的系數絕對值相等;②加減消元;③解一元一次方程;④求另一個未知數的值,得方程組的解.進一步理解二元一次方程組的“消元”思想,初步體會數學研究中“化未知為已知”的化歸思想.選擇恰當的方法解二元一次方程組,培養(yǎng)學生的觀察、分析問題的能力.
解析:要在地球儀上確定南昌市的位置,需要知道它的經緯度,故選D.方法總結:本題考查了坐標確定位置,熟記位置的確定需要橫向與縱向的兩個數據是解題的關鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據此說明醫(yī)院在________區(qū),陽光中學在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數,數字表示行數.故填A3,D5.方法總結:解此類題先要弄清區(qū)域定位法中字母及數字各自表示的含義,再用已知的表示方法來確定相關位置.三、板書設計確定位置有序實數對方位法經緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學生,進一步豐富學生的數學活動經驗,培養(yǎng)學生觀察、分析、歸納、概括的能力.教學過程中創(chuàng)設生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學生創(chuàng)造自主學習、合作交流的機會,促使他們主動參與、積極探究.
二.說學情:學生已學習2~6乘法口訣,已有編制口訣的活動經驗和方法,知道計算幾個幾的方法,了解了乘法口訣的基本結構,在乘法口訣與乘法意義的聯(lián)系方面已積累了一些經驗。二年級的學生的思維仍處于形象思維為主的階段,但已有了一定地觀察.比較.綜合的意識。在興趣濃厚的狀態(tài)下,有較強的自信心和強烈的表現(xiàn)欲望。三.說教學目標:根據二年級學生的已有基礎.認知規(guī)律,結合本課的知識特點及課程目標的要求。我們確定了如下教學目標:1.在情境中引導學生自主探索,合作交流,理解乘法意義,編制7的乘法口訣。2.在活動中引導學生熟記7的乘法口訣,會用7的乘法解決簡單的實際問題。3.在編口訣.用口訣的過程中,提高學生自主學習能力,與他人合作交流的能力,積累學習情感,享受成功喜悅。教學重難點:熟練表內乘法,是每個學生應具備的最基本的計算能力,因此本課的教學重點是理解7的乘法口訣形成過程;難點是怎樣去熟記并利用乘法口訣來解決生活中的實際問題。
3.小結。引導學生歸納兩位數加減法的口算步驟:要把加上或減去的兩位數看成一個整十數和一個一位數,先算兩位數加、減整十數,再算兩位數加減一位數。三、鞏固練習課本第93頁的做一做。分別指名口算,并說說怎么想的。四、全課總結1.根據學生回答,教師歸納小結并出示課題:口算兩位數加、減兩位數。2.口算兩位數加、減兩位數應注意什么?五、布置作業(yè)教后反思《標準》提倡算法多樣化,目的是提倡學生個性化的學習。本單元仍然注意體現(xiàn)這一理念,如本課時教學口算兩位數加、減兩位數時,既呈現(xiàn)了口算方法,還出現(xiàn)了在腦中想豎式的方法;在教學筆算時,還出現(xiàn)口算的方法。其目的就是鼓勵學生展開思路,在交流、比較的基礎上不斷地完善自己的想法,學習計算方法。
通過這一系列活動,既能加深學生對知識的理解、記憶,又培養(yǎng)他們的觀察、實驗、猜測、理解與交流能力,有效地突破教學重難點。(三)、鞏固練習,深化認識重視生活應用,讓學生實踐數學,學以致用是數學教學的一個重要原則。針對這一原則,在這個環(huán)節(jié)中,我安排了一組梯度式練習題:鞏固深化題:教材26頁的“連一連”、27頁“練一練”中的1、3題;實際應用題:觀察汽車、觀察冰箱。(四)、暢談感受,交流收獲。本著“小課堂,大社會”的教育理念,本節(jié)課的總結采取學生自我評價、自我反思、自我教育的方式,讓學生自己談收獲,并進行思想教育,在生活中,我們應該做一個善于觀察,勤于思考的人,相信大家能做到。五、板書設計由于本節(jié)課的教學內容主要是組織觀察實踐活動,因此,這樣板書簡潔明了,有效的突出重難點,使學生一目了然,便于記憶。
(4)判斷中進行教學內容的遞深,形成了反思——學習——強化的整個學習過程。在學生做出“6是倍數”的正確判斷之后,并不簡單換章,而是以此為契機“教學找一個數的因數”以談話導入,形成知識相互的聯(lián)系與區(qū)別,“談話:必須說清誰是誰的倍數,誰是誰的因數。所以6可能是某些數的倍數,也可能是某些數的因數,那我們就來找一個數的因數。你能找出36所有的因數嗎?”(5)討論互評,自主學習放手讓學生學習找一個數的因數,從無序到有序,從自尋到互學,請學生板書,學生評價,“提問:你是用什么方法找到一個數的因數,可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導,掌握不失總結如:提問:5為什么不是36的因數?(因為36÷5不能整除,有余數)
這樣設計,既復習了新課所必備的舊知,又自然合理地引入新課,一開始就緊緊吸引了學生的注意力,激發(fā)起學生的求知欲。(二)探索新知1、質數和合數的意義(教學例1)。(1)讓學生拿出印發(fā)的寫有例1原題的練習紙,利用學過的求約數的方法,寫出1-12每個數的所有約數。(2)按照約數個數的多少進行分類,提出以下問題讓學生討論:①每一個數約數的個數相同嗎?各有多少個約數?②按照每個數的約數個數的多少,可以把這些數分成幾類?你認為是一類的用同一符號標出來。檢查學生討論情況并提問:你是怎樣分的?為什么這樣分?每一類各包括了哪幾個數?讓學生充分發(fā)表意見,然后師生共同歸納,并用投影出示三種分類情況:
3.第三個環(huán)節(jié)是:鞏固深化,應用新知。首先讓學生完成課本76頁練習十三的第一題。主要是檢驗學生對復式折線統(tǒng)計圖繪制方法的掌握情況,并能對復式折線統(tǒng)計圖所表達的信息進行簡單的分析、比較。練習時,先讓學生在書上獨立完成,再說一說制圖的正確步驟,我用多媒體演示,并提醒學生注意最高氣溫和最低氣溫對應的折線各用什么表示,還要寫上數據和制圖日期,根據學生的制作情況,還可以組織學生討論一下,兩條折線上的數據怎樣寫就不混淆了?最后讓學生看圖回答題中的問題,這里重點幫助學生弄清“溫差”的含義,另外,在回答最后一個問題時,學生可能會說“我喜歡看統(tǒng)計圖”,我就重點讓學生說說為什么喜歡看統(tǒng)計圖?從而讓學生進一步體會復式折線統(tǒng)計圖的直觀、形象的優(yōu)越性
2、81頁的做一做。做完后,引導學生觀察4和8;16和32這一組的最大公因數的特點:當較大數是較小數的倍數時,他們的最大公因數是較小數。1和7;8和9這一組數的最大公因數只有1。這樣的練習設計,目的是讓學生發(fā)現(xiàn)求最大公因數中的特殊情況。四、遷移運用,拓展探究寫出下列各分數分子和分母的最大公因數。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結:通過今天的學習,你有什么收獲?同桌互說,指名匯報。這樣的總結,從知識的層面上做了一次回顧。并及時的總結了解學情,真正做到“堂堂清”五、說板書設計我本節(jié)課的板書設計力圖全面而簡明的將本課的內容傳遞給學生,便于學生理解和記憶。各位評委老師,我僅從教材、教法、學法、及教學過程、板書設計等幾個方面對本課進行說明。這只是我預設的一種方案,但是課堂千變萬化的生成效果,最終還要和學生、課堂相結合。說課的不足之處還請多多指教,我的說課到此結束,謝謝各位評委老師。
探究點三:列一元一次方程解應用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結果,不寫分析過程)解析:(1)先設該單位參加旅游的職工有x人,利用人數不變,車的輛數相差1,可列出一元一次方程求解;(2)可根據租用兩種汽車時,利用假設一種車的數量,進而得出另一種車的數量求出即可.解:(1)設該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結:解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程再求解.