解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內角和定理:三角形的內角和等于180°.2.三角形內角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內角和是180°這一結論
方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結:已知三角形三邊的長,根據全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學習了有關三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學生的動手能力、語言表達能力
解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結:分式的分母互為相反數時,可以把其中一個分母放到帶有負號的括號內,把分母化為完全相同.再根據同分母分式相加減的法則進行運算.三、板書設計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練
例1用為每個小朋友準備春游食品的活動,由“應該每份同樣多”引出“平均分”,讓學生認識“每份分得同樣多,叫平均分”。接著,通過例2、例3,讓學生經歷“平均分”的過程,建立起“平均分”的概念。二、說教學目標二年級學生年齡小,他們以直觀思維為主,不易理解抽象的概念。雖然他們在平時的生活實踐中已有一定的分物品的經驗,但缺少平均分物品的實踐經驗。因此,他們對于“什么是平均分”,“怎樣平均分物品”都感到比較困惑。所以,本節(jié)課的教學目標可以預設為:1.引導學生在具體情境中感受“平均分”,在分東西的實踐活動中建立“平均分”的概念,理解“平均分”的含義。2.讓學生經歷“平均分”的過程,在具體情境與實踐活動中明確“平均分”的含義,掌握“平均分”物品的不同方法。3.培養(yǎng)學生自主探究的意識和解決問題的能力。
教學媒體設計充分利用多媒體教學,將powerpoint、《幾何畫板》兩種軟件結合起來制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數圖像的動畫性,更加形象的反映出作圖的過程,增加數學的美感,激發(fā)學生作圖的興趣。教學評價設計本節(jié)課,我合理、充分利用了多媒體教學的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應用,畫出了標準、動畫形式的二次函數的圖像,讓抽象思維不強的學生,更加形象的結合圖形,分析說出二次函數y=ax2的有關性質,充分體現了“數形結合”的數學思想。為了突出重點,攻破難點,我要求學生“先觀察后思考”、“先做后說”、“先討論后總結”,“師生共做”充分體現了教學過程中以學生為主體,老師起主導作用的教學原則。本節(jié)課,讓學生有觀察,有思考,有討論,有練習,充分調動了學生的學習興趣,從而為高效率、高質量地上好這一堂課作好了充分的準備。
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結:本題考查了平行四邊形的判定和性質,勾股定理,平行四邊形的面積,掌握定理是解題的關鍵.三、板書設計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質的綜合.本節(jié)課的教學主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學生進行合作交流.在解決有關平行四邊形的問題時,要根據其判定和性質綜合考慮,培養(yǎng)學生的邏輯思維能力.
【教學目標】1、了解方程、不等式、函數的圖像之間的聯系;2、掌握一元二次不等式的圖像解法;【教學重點】1、 方程、不等式、函數的圖像之間的聯系;2、 一元二次不等式的解法。【教學難點】 一元二次不等式的解法。【教學設計】 1、從復習一次函數圖像、一元一次方程、一元一次不等式的聯系入手;2、類比觀察一元二次函數圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習,培養(yǎng)學生的數學思維能力?!菊n時安排】 2課時(90分鐘)【教學過程】一、一元二次不等式的解法² 復習回顧1、根據初中所學知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數y=x²-5x+6的圖像,回答下列問題:(1)當y=0時,x取什么值?(2)二次函數y=x²-5x+6的圖像與x軸交點的坐標是什么?(3)當y<0時,x的取值范圍是什么?總結:由此看到,通過對函數y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結為兩種認識:⑴從函數值的角度看,就是尋求使一次函數y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合。教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數的關系。1、“動”―――學生動口說,動腦想,動手做,親身經歷知識發(fā)生發(fā)展的過程。2、“探”―――引導學生動手畫圖,合作討論。通過探究學習激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設計力求做到與學生的生活實際聯系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。4、“滲”―――在整個教學過程中,滲透用聯系的觀點看待數學問題的辨證思想。
一、教材的地位與作用 本節(jié)主要學習一元一次不等式組及其解集的概念,并要求學生會用數軸確定解集。它是一元一次不等式的后續(xù)學習,也是一種基本的數學模型,也為下節(jié)和今后解決實際生產和生活問題奠定了堅實的知識基礎。另外,整個學習的過程中數軸起著不可替代的作用,處處滲透著數形結合的思想,這種數學思想會一直影響著學生今后數學的學習。二、學情分析從學生學習的心理基礎和認知特點來說,學生已經學習了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數學模型,有一定的數學化歸能力。但學生將兩個一元一次不等式的解集在同一數軸上表示會產生一定的困惑。這個年齡段的學生,以感性認識為主,并向理性認知過渡,所以,本節(jié)課的設計是通過學生所熟悉的問題情境,讓學生獨立思考,合作交流,從而引導其自主學習。
活動6:通過隨堂小測的方式辨別圓的相關概念。目的:讓學生準確地掌握直徑與弦,弧與半圓的關系,以及準確理解等圓和等弧的概念。活動7:讓學生分組討論“投圈游戲”,解決生活中的實際問題。目的:提高學生運用所學圓的知識,解決實際問題的能力;也是為了鞏固圓的定義,同時再次激發(fā)學生的學習興趣。活動8:給學生一個草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學生的綜合運用能力,并鞏固圓的定義?;顒?:讓學生根據樹木的年輪的直徑和生長年齡,計算樹木每年的生長情況。目的:鞏固圓的知識?;顒?0:讓學生回顧本節(jié)課的重要內容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關元素的概念,便于識記、理解和運用。后者的目的是:第一題,檢測學生的動手能力和提高學生學習數學的興趣;第二題,檢測學生對本節(jié)課的重要內容的理解情況;第三題,檢測學生的綜合運用能力。以上是我對本節(jié)課內容的理解和設計。
一、教材分析:1、地位與作用:《頻率與概率》選自高等教育出版社出版,李廣全、李尚志主編的中等職業(yè)教育課程改革國家規(guī)劃新教材《數學》(基礎模塊)下冊,第十章第二節(jié)的內容。本節(jié)課的最大特點是與人們的日常生活密切聯系。而本節(jié)課的內容主要包括概率的定義和用頻率估計概率的方法,安排1課時完成。本節(jié)課的學習,將為后面學習古典概型和用列舉法求等可能性事件的概率打下基礎,同時也為學生體會概率和統(tǒng)計之間的聯系打下基礎,在教材中處于非常重要的位置。2、學情分析:本節(jié)課的授課對象是高二(2)班的會計專業(yè)的學生,女生偏多。學生數學基礎較好。學生思維活躍,善于交流,動手操作能力強,對上節(jié)課的必然事件、隨機事件、不可能事件知識已經理解并掌握,表現欲強。這些特點為本堂課的有效教學提供了質的保障。
1、重點:如何處理主次矛盾、矛盾主次方面的關系,具體問題具體分析2、難點:弄清主次矛盾、矛盾主次方面的含義四、學情分析高二學生具備了一定的抽象思維和綜合分析的能力,但實踐能力普遍較弱。本框所學知識理論性較強,主次矛盾和矛盾的主次方面這兩個概念極易混淆,學生較難理解。而且本框內容屬方法論要求,需要學生將理論與實踐緊密結合,學生在運用理論分析實際問題上還比較薄弱。五、教學方法:1、探究性學習法。組織學生課后分小組進行探究性學習。在探究性學習中進行:“自主學習”、“合作學習”。讓學生進行自主學習的目的是:讓學生作學習的主人,“愛學、樂學”,并培養(yǎng)學生終身學習的能力;讓學生進行合作學習的目的是:在小組分工合作中,在生生互動( 學生與學生互動)中,促使學生克服“以自我為中心,合作精神差,實踐能力弱“等不足,培養(yǎng)綜合素質。2、理論聯系實際法。關注生活,理論聯系實際,學以致用。
一、教材分析本框題包括什么是哲學的基本問題、為什么思維和存在的關系問題是哲學的基本問題兩個目題。第一個問題:什么是哲學的基本問題。其邏輯順序是:什么是哲學的基本問題→哲學的基本問題所包含的兩方面的內容→對哲學的基本問題第一方面內容的不同回答是劃分唯物主義和唯心主義的標準→對哲學的基本問題第二方面內容的不同回答是劃分可知論和不可知論的標準。第二個問題:為什么思維和存在的關系問題是哲學的基本問題。其 邏輯順序是:思維和存在的關系問題是人們在現實生活和實踐活動中遇到的和無法回避的基本問題→思維和存在的關系問題,是一切哲學都不能回避的、必須回答的問題→思維和存在的關系問題,貫穿于哲學發(fā)展的始終,對這個問題的不同回答決定著各種哲學的基本性質和方向,決定著對其它哲學問題的回答。 二、教學目標(一)知識目標(1)識記哲學的基本問題(2)解釋哲學的基本問題
教學目標:1.在實際情境中,認識并會求一組數據的中位數、眾數,并解釋其實際意義。2.根據具體的問題,能選擇適當的統(tǒng)計量表示數據的不同特征。3.感受統(tǒng)計在生活中的應用,增強統(tǒng)計意識,發(fā)展統(tǒng)計觀念。教學重點認識中位數、眾數,并解釋其實際意義。教學難點會求一組數據的中位數、眾數。教具準備課件教學過程:一、設疑激趣揭題二、探索新知看書自學下表是一道六年級淘氣身高與全市男生平均身高的記錄表請同學們根據這個記錄表的書叫你完成統(tǒng)計圖。數學書P63三、獨立完成試一試1.第l題。P64---p65練一練思考交流匯報:預設學生匯報的年齡在10歲左右對老師出示結果表示猜疑,計算求證學生欣賞題學生觀察思考:1.淘氣的身高在()年級與全市男生平均身高水平差距最大?2.在()年級時候,與全市男生平均身高水平差距最???3.淘氣的身高在那個階段張得最快?與全市男生的平均身高的增長一致嗎?
1、圓的半徑是 ,假設半徑增加 時,圓的面積增加 。(1)寫出 與 之間的關系表達式;(2)當圓的半徑分別增加 , , 時,圓的面積增加多少。【設計意圖】此題由具體數據逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。2、籬笆墻長 ,靠墻圍成一個矩形花壇,寫出花壇面積 與長 之間的函數關系式,并指出自變量的取值范圍?!驹O計意圖】此題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。(六) 小結思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習第1題,習題2.1第1題;
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質,解題的關鍵是根據條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
設計意圖這一組習題的設計,讓每位學生都參與,通過學生的主動參與,讓每一位學生有“用武之地”,深刻體會本節(jié)課的重要內容和思想方法,體驗學習數學的樂趣,增強學習數學的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導學生進行課堂小結,給出下列提綱,并就學生回答進行點評。(1)通過本節(jié)課的學習,你學會了哪些判斷直線與圓位置關系的方法?(2)本節(jié)課你還有哪些問題?(學生活動)學生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習8.4.41、2題(2)實踐調查:尋找圓與直線的關系在生活中的應用。設計意圖通過讓學生課本上的作業(yè)設置,基于本節(jié)課內容和學生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎鞏固題、理解題和拓展探究題。使學生完成基本學習任務的同時,在知識拓展時起激學生探究的熱情,讓每一個不同層次的學生都可以獲得成功的喜悅。
至此,估計學生基本能夠掌握定理,達到預定目標,這時,利用提問形式,師生共同進行小結。五、幾點說明1、板書設計:為了使本節(jié)課更具理論性、邏輯性,我將板書設計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設計要突出的特色:為了給學生營造一個民主、平等而又富有詩意的課堂,我以新數學課程標準下的基本理念和總體目標為指導思想,在教學過程中始終面向全體學生,依據學生的實際水平,選擇適當的教學起點和教學方法,充分讓學生參與教學,在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學生都有所得,我注意前后知識的鏈接,進行各學科間的整合,為學生提供了廣闊的思考空間,同時讓學生利用所學知識解決實際問題,感受理論聯系實際的思想方法。