三、關于課本素材的處理課本素材:“雞兔同籠”和“以繩測井”兩個古代趣味問題。考慮到八年級學生獨立思考和探索問題的能力都已達到一定的水平,特別增加了“自主探索,分層推進”這一環(huán)節(jié),為每一位學生都提供了發(fā)展的空間。同時師生之間、學生之間共同研討,形成教與學的和諧統(tǒng)一。凡能列二元一次方程組解決的問題,一般都可列一元一次方程來解,這就影響了用方程組去分析和解決問題,使學生形成思維定勢。為此通過對“雞兔同籠”多種求解方法的分析,使學生經歷知識的發(fā)生過程,認識到列方程組的必要性和優(yōu)越性,從而解決學生的思維定勢的束縛。 以上是我對《雞兔同籠》這一節(jié)課的一點思考,希望各位專家和老師指正,最后,我用布魯克菲爾德的一句話來結束我的發(fā)言:讓學生學會討論、合作交流,討論會使學生成為知識的共同創(chuàng)造者!
在第1環(huán)節(jié)基礎上,再讓同學認識到函數(shù)Y=2X-1的圖象與方程2X-Y=1的對應關系,從而把兩個方程組成方程組,讓學生在理解二元一次方程與函數(shù)對應的基礎上認識到方程組的解與交點坐標的對應關系,從而引出二元一次方程組的圖象解法。3、例題訓練,知識系統(tǒng)化通過書上的例1,用作圖象的方法解方程組,讓學生明白解題步驟與格式,從而規(guī)范理順所學的圖象法解方程組,例題由師生合作完成,由學生說老師寫的方式。4、操作演練、形成技能讓學生獨立完成書P208隨堂練習,給定時間,等多數(shù)學生完成后,實物投影其完成情況,并作出分析與評價。5、變式訓練,延伸擴展通過讓學生做收上P208的試一試,而后給一定時間相互交流,并請代表發(fā)言他的所悟,然而老師歸納總結,并讓學生通過自已嘗試與老師的點拔從“數(shù)”與“形”兩個方面初步體會某些方程組的無解性,進一步發(fā)展學生數(shù)形結合的意識和能力。6、檢測評價,課題作業(yè)
將一個圓分成三個大小相同的扇形,你能計算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴交流設計意圖:通過引導學生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關系為后面學習扇形面積公式做鋪墊,體現(xiàn)知識的延續(xù)性。(六)、鞏固練習.如圖,把一圓分成三個扇形,你能求出這三個扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結學完這節(jié)課你有哪些收獲?設計意圖:通過小節(jié)讓學生對所學知識進行梳理,使所學知識能合理地納入自身的知識結構。(八) 布置作業(yè):中等學生:P125. 1優(yōu)等生: P125. 2,3我針對學生素質的差異設計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎知識,又使學有余力的學生有所提高,從而達到拔尖和“減負”的目的。
接著引導學生進一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學生的思考經歷由一般到特殊的過程。2.截面是其他形狀學生先猜想正方體的截面還有可能是什么形狀,再利用實驗操作型課件對正方體進行無限次的切截,讓學生在無限次切截的過程中體會截面產生和變化的整個過程,發(fā)現(xiàn)截面產生和變化的規(guī)律。學生從切截活動中發(fā)現(xiàn)猜想時沒有想到的截面圖形,體會到探索的樂趣。教師再引導學生歸納正方體截面邊數(shù)的規(guī)律。學生的認知得到升華。接著引導學生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學生先猜想圓柱體的截面可能是什么形狀,教師利用實驗操作型課件對圓柱體進行無限次的切截,學生觀察截面形狀。
說明:此處進行的是一次嘗試應用乘方運算來解決開頭的問題,互相呼應,以體現(xiàn)整節(jié)課的完整性,把學生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學生應用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習題是對課本上例題的簡單重復和模仿,通過本節(jié)課的學習,多數(shù)學生應該可以較輕松地完成。總之,在整個教學設計中,我始終以學生為課堂主體,讓他們積極參與到教學中來,不斷從舊知識中獲得新的認識,通過不斷進行聯(lián)系比較,讓學生主動自覺地去思考、探索、總結直至發(fā)現(xiàn)結果、發(fā)現(xiàn)"方法",進而優(yōu)化了整個教學。
還有其他解法嗎?從中讓學生體會解一元一次方程就是根據(jù)是等式的性質把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導學生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結果上報教師,最好分四組,這樣節(jié)省時間.師總結學生活動的結果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
四、教學過程分析為有序、有效地進行教學,本節(jié)課我主要安排了以下教學環(huán)節(jié):(一)復習導入主要復習一下三種統(tǒng)計圖,為接下來介紹三種統(tǒng)計圖的特點及根據(jù)實際問題選取適當?shù)慕y(tǒng)計圖做好知識準備。(二)問題探究選取課本上“小華對1992~2002年同學家中有無電視機及近一年來同學在家看電視的情況”的3個調查項目,進而設計3個探究問題從而加深學生對每一種統(tǒng)計圖的進一步認識,至此用自己的語言總結出每一種統(tǒng)計圖的特點。(三)實踐練兵這一環(huán)節(jié)通過2個實際問題的設計,通過學生對問題的分析、討論,使學生認識到適當選取統(tǒng)計圖有助于幫助人們去更快速、更準確地獲取信息。(四)課堂小結總結這一節(jié)課所學的重點知識,這部分主要是讓學生自己去總結,看看這節(jié)課自己有哪些收獲。(五)作業(yè)布置進一步鞏固本節(jié)課所學的知識,達到教學效果。以上就是我對這節(jié)課的見解,不足之處還望批評和指正。
一是先用計算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學生探索數(shù)學規(guī)律的興趣,為下面的數(shù)學探險作鋪墊。二是數(shù)學探險。在這個步驟中,我先出示8個1乘8個1,學生用計算器計算的答案肯定不一樣,因為學生帶來的計算器所能顯示的數(shù)位不一樣,而且這些計算器所能顯示的數(shù)位都不夠用,也就是這道題目計算器不能解決。這時我提問:“你覺得問題出在哪兒?是我們錯了,還是計算器錯了?你能想辦法解決嗎?請四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問題的需要和欲望。在學生找不到更好的解決方法時,引導學生向書本請教,完成課本第101頁想想做做的第四題。讓學生利用計算器算出前5題的得數(shù),引導學生通過觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個算式,發(fā)展學生的合情推理能力,同時也讓學生領略了數(shù)學的神奇。
5、總結學生解題過程中存在的問題,并指導并糾正、分析根本原因。6、通過演示法給學生演示完整、詳細和規(guī)范的解題過程。7、總結有理數(shù)的運算順序和方法。先讓學生自己總結運算順序,培養(yǎng)學生自己思考的能力,然后教師進行糾正。等這個過程結束之后,再給出完整的運算順序和方法。8、出示練習題,鞏固所學知識,教師及時指正。9、最后布置課后作業(yè)題。四、教學評價本節(jié)課我注重體現(xiàn)“以教師為主導、學生為主體、以學生發(fā)展為本的教學思想”。1、通過具體的題目引入,讓學生先以自己的知識體系解決問題,在這過程中發(fā)現(xiàn)問題、歸納總結原因,并予以解決。一方面復習前面所學的基本運算,另一方面完善學生的知識體系。2、培養(yǎng)學生自主學習與探究的能力、分析與解決問題的能力。
(六)當堂達標(練習二、三 10分鐘)練習二讓學生口答,通過練習,鞏固學生對直線、射線、線段表示方法的掌握。練習三讓學生去黑板板演,教師檢驗對錯并重點強調幾何語言的表述。文字語言和圖形語言之間的轉化是難點,著重練習文字語言向圖形語言的轉化,提高幾何語言的理解與運用能力。當堂達標是檢查學習效果、鞏固知識、提高能力的重要手段。通過練習,學生會體驗到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時獲得信息反饋,以便課下查漏補缺。 (七)小結(3分鐘)教師提問“這節(jié)課我們學了哪些知識?”請學生回答,教師做適當補充。課堂小結對一節(jié)課起著“畫龍點晴”的作用,它能體現(xiàn)一節(jié)課所講的知識和數(shù)學思想。因此,在小結時,教師引導學生概括本節(jié)內容的重點。
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結果上報教師,最好分四組,這樣節(jié)省時間.師總結學生活動的結果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.(三)理解性質,應用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.對比練習: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(上)義務教育課程標準實驗教材第2章第6節(jié)第一課時的內容。它是學生在已經掌握有理數(shù)加法、減法、乘法、除法、乘方以后進行學習的。它是建立在有理數(shù)的有關概念和各種運算的意義及法則的基礎上進行的綜合性運算。它是本章的重點之一,是以上各種運算的繼續(xù)和發(fā)展,對學生運算能力和數(shù)學學習能力的培養(yǎng),有著十分重要的意義,同時也是初中數(shù)學運算的重要內容之一,是后續(xù)學習的基礎。(二)教學目標的確立:參照義務教育階段《數(shù)學課程標準》的要求,確定本節(jié)課的教學目標如下:1、知識技能目標:(1)掌握有理數(shù)的混合運算法則及運算順序。(2)熟練的進行有理數(shù)的混合運算。2、能力目標:培養(yǎng)學生的觀察能力和運算能力。3、情感與態(tài)度目標:(1)培養(yǎng)學生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,并養(yǎng)成驗算的良好的學習習慣。
五、兩點說明。(一)、板書設計這節(jié)課的板書我是這樣設計的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學生把文字語言轉化成符號語言的能力,板書中只出現(xiàn)兩種法則的符號表示,從而加深他們對法則的理解,板書右邊是學生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結,重點寫出:有理數(shù)的除法可以轉化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學思想方法。有理數(shù)的除法板演練習:有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結:有理數(shù)的除法 有理數(shù)的乘法轉化(二)、時間分配:教學過程中的八個環(huán)節(jié)所需的時間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。
“數(shù)的運算”是“數(shù)與代數(shù)”學習領域的重要內容,減法是其中的一種基本運算.本課的學習遠接小學階段關于整數(shù)、分數(shù)(包括小數(shù))的減法運算,近承第四節(jié)有理數(shù)的加法運算.通過對有理數(shù)的減法運算的學習,學生將對減法運算有進一步的認識和理解,為后繼諸如實數(shù)、復數(shù)的減法運算的學習奠定了堅實的基礎.鑒于以上對教學內容在教材體系中的位置及地位的認識和理解,確定本節(jié)課的教學目標如下:1、知識目標:經歷探索有理數(shù)的減法法則的過程,理解有理數(shù)的減法法則,并能熟練運用法則進行有理數(shù)的減法運算.2、能力目標:經歷由特例歸納出一般規(guī)律的過程,培養(yǎng)學生的抽象概括能力及表達能力;通過減法到加法的轉化,讓學生初步體會轉化、化歸的數(shù)學思想.3、情感目標:
②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構.突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數(shù)式存在的普遍性;讓學生給自己構造的一些簡單代數(shù)式賦予實際意義,進一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質疑、說服、推廣的過程中得到“同化”和“順應”,直至豁然開朗,突破思維的瓶頸.2.生成預設為生成服務,本案編代數(shù)式、主題研究等環(huán)節(jié)的設計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學生思維的亮點,及時進行引導和激勵,并根據(jù)具體教學對象,適當調整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預設與生成齊飛.
學生在觀察和討論后,由師生合作,歸納出中心對稱的性質:(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分;(2)關于中心對稱的兩個圖形是全等圖形.讓學生嘗試自己證明△ABC與△A′B′C′全等,然后在教師的引導下相互交流。接著,對“軸對稱”和“中心對稱”的概念進行比較,我采用列表格的方式,從三個方面分別讓學生去填,意圖讓學生把新學的知識及時納入到已學的知識體系中去。4、靈活運用體會內涵1)首先講授例1。(1)選擇點O為對稱中心,畫出點A關于點O的對稱點A′;(2)選擇點O為對稱中心,畫出線段AB關于點O的對稱線段A′B′.(3)已知四邊形ABCD和O點,畫出四邊形ABCD關于O點的對稱圖形。在老師的引導下,共同完成作圖,并規(guī)范畫圖方法:要畫一個多邊形關于已知點的對稱圖形,只要畫出這個多邊形的各個頂點關于已知點的對稱點,再順次連接各點即可。在本次活動中,意圖利用中心對稱的性質進行作圖,加強對中心對稱性質的理解。
活動四:自主學習,尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫弧?”同桌演示尺規(guī)作圖。最后折紙驗證,使整個學習過程更加嚴謹。我將用下面這個課件給學生展示作圖過程。再次回顧情境,讓學生完成情境中的問題。(三)講練結合,鞏固新知第一個題目是直接運用性質解決問題,比較簡單,面向全體學生。我還設計了第二個題目,想訓練學生審題的能力。(四)課堂小結在學生們共同歸納總結本節(jié)課的過程中,讓學生獲得數(shù)學思考上的提高和感受成功的喜悅并進一步系統(tǒng)地完善本節(jié)課的知識。(五)當堂檢測為了檢測學生學習情況,我設計了當堂檢測。第一個題目,讓學生學會轉化的思想來解決問題;第二個題目練習尺規(guī)作圖。
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數(shù)形結合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結,結合板書,引導學生自我總結,重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題
一、說教材:等腰三角形是北師大版初中八年級下冊數(shù)學教材第一章第一節(jié)的教學內容,本節(jié)是軸對稱圖形的應用,是研究等腰三角形的開篇。通過本章節(jié)的學習,可以豐富和加深學生對已學圖形的認識,為以后的圖形學習和證明打好基礎。本節(jié)在編排上考慮學生的認知規(guī)律,從學生容易接受的動手操作找規(guī)律開始到幾何畫板的驗證再過渡到幾何證明與應用。根據(jù)課程標準,確定本節(jié)課的目標為:【教學目標】1.知識與能力 理解并掌握等腰三角形的定義,探索等腰三角形的性質;能夠用等腰三角形的知識解決相應的數(shù)學問題.2.過程與方法通過動手操作、動態(tài)演示等方法,培養(yǎng)學生思考探究數(shù)學的能力;通過例題與練習,提高學生添加輔助線解決問題的能力。3.情感、態(tài)度與價值觀 在探索等腰三角形性質的過程中體會軸對稱圖形的美,感受數(shù)學與生活的聯(lián)系;在例題教學中,感受數(shù)學之美;培養(yǎng)學生分析解決問題的能力,使學生養(yǎng)成良好的學習習慣.
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內容,是進一步學習分式方程、反比例函數(shù)以及其它數(shù)學知識的基礎,同時也是學習物理、化學等學科不可缺少的工具。與其它數(shù)學知識一樣,它在實際生活中有著廣泛的應用。學習分式的加減法并熟練地進行運算是學好分式運算的關鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。