提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中八年級數(shù)學下冊利用四邊形邊的關系判定平行四邊形教案

  • 北師大初中八年級數(shù)學下冊利用四邊形邊的關系判定平行四邊形教案

    北師大初中八年級數(shù)學下冊利用四邊形邊的關系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 北師大初中八年級數(shù)學下冊平行四邊形的判定定理3與兩平行線間的距離教案

    北師大初中八年級數(shù)學下冊平行四邊形的判定定理3與兩平行線間的距離教案

    (2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結:本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關鍵.三、板書設計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學生進行合作交流.在解決有關平行四邊形的問題時,要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學生的邏輯思維能力.

  • 北師大版初中數(shù)學八年級下冊平行四邊形的性質(zhì)說課稿2篇

    北師大版初中數(shù)學八年級下冊平行四邊形的性質(zhì)說課稿2篇

    注意:平行四邊形中對邊是指無公共點的邊,對角是指不相鄰的角,鄰邊是指有公共端點的邊,鄰角是指有一條公共邊的兩個角.而三角形對邊是指一個角的對邊,對角是指一條邊的對角.(教學時要結合圖形,讓學生認識清楚)設計意圖:通過觀察圖片和回顧以前的知識,使學生由感性認識上升到理性認識。通過描述平行四邊形的特點和定義,也培養(yǎng)了學生的語言表達能力。同時也滲透了一些由實際問題轉化為數(shù)學問題的“轉化”的數(shù)學思想。(三)、引導實驗探索新知【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來探究一下.動手操作并思考:讓學生根據(jù)平行四邊形的定義畫一個一個平行四邊形,觀察這個四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外以,它的邊和角之間有什么關系?度量一下,是不是和你猜想的一致?

  • 平行四邊形和梯形教案

    平行四邊形和梯形教案

    一、游戲導入,激發(fā)興趣。  師:同學們,喜歡玩游戲嗎?好,我們來玩一個“猜圖形”的游戲,誰想來?  面向全體:請同學們提供準確的信息?! ∶嫦虿抡?請你根據(jù)大家的描述來猜是什么圖形,好嗎?準備好了嗎?開始!  教師逐個板貼長方形、正方形、平行四邊形和梯形,學生逐個提供信息逐個猜,在此過程中教師注意即時評價學生或糾正學生的錯誤?! ?長方形和正方形我們已經(jīng)很熟悉了,所以大家的描述既準確又充分,(拿下長方形和正方形)而描述平行四邊形和梯形的時候,有些同學的描述就不夠準確了。本節(jié)課我們就來進一步認識它們。(板書課題:平行四邊形和梯形)

  • 北師大初中七年級數(shù)學下冊利用“邊角邊”判定三角形全等教案

    北師大初中七年級數(shù)學下冊利用“邊角邊”判定三角形全等教案

    AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練

  • 北師大初中七年級數(shù)學下冊利用“角邊角”“角角邊”判定三角形全等教案

    北師大初中七年級數(shù)學下冊利用“角邊角”“角角邊”判定三角形全等教案

    1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關問題.(難點) 一、情境導入如圖所示,某同學把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學生活動:學生先自主探究出答案,然后再與同學進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.

  • 人教版新課標小學數(shù)學四年級上冊平行四邊形和梯形教案2篇

    人教版新課標小學數(shù)學四年級上冊平行四邊形和梯形教案2篇

    3、師:不相交的兩條直線畫長一些會怎樣?量一量兩條相交直線做組成的角分別是多少度?4、由小組同學在原記錄單上動手合作操作,并進行討論、匯報。5、師生共同總結:不相交的兩條直線畫長一些仍不相交,這兩條直線叫平行線,也可以說它們相互平行;相交的兩條直線形成的四個角,如果都是90度,就說這兩條直線相互垂直,其中一條叫另外一條的垂線,這兩條直線的焦點叫做垂足。6、生齊讀P65平行和垂直概念,并畫下來。7、今天我們就要一起來認識認識平行與垂直。(揭示課題)三、解釋應用,鞏固新知1、我們天天都在和垂線與平行線打交道:書本面相鄰的兩邊是互相垂直的,相對的兩邊是互相平行的。2、P64主題圖,找一找,圖上有哪些平行和垂直的現(xiàn)象?3、做一做1找一找、想一想還有哪些物體的邊是互相垂直的,哪些物體的邊是互相平行的?

  • 北師大初中七年級數(shù)學下冊利用“邊邊邊”判定三角形全等教案

    北師大初中七年級數(shù)學下冊利用“邊邊邊”判定三角形全等教案

    解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉化為三角形的經(jīng)驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數(shù)學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練

  • 人教版新課標小學數(shù)學四年級上冊平行四邊形和梯形說課稿3篇

    人教版新課標小學數(shù)學四年級上冊平行四邊形和梯形說課稿3篇

    1.平行四邊形和梯形都是四邊形。師:要想研究它們,先來觀察一下,這兩種圖形有什么共同的特點?學生說明,教師板書:四邊形(于板貼平行四邊形后),四邊形(于板貼梯形后)。2.平行四邊形和梯形都有對邊平行。師:還有什么共同點?學生指黑板圖形說明平行四邊形和梯形中平行的對邊。師:這是我們通過觀察出來的,真的是這樣嗎?師:紙上(見上圖)就有一個平行四邊形和一個梯形.驗證一下它們的對邊平行嗎?拿出你的工具開始吧!(學生操作,指生實物投影就圖說明。)師:通過驗證,說明了什么呢?有同樣的發(fā)現(xiàn)嗎?3.形成概念。(1)平行四邊形。師:剛才我們驗證了一個平行四邊形和一個梯形,那么其它的平行四邊形或梯形是不是也這樣呢?這有3個平行四邊形。課件呈現(xiàn):3個平行四邊形師:第一個我們剛才驗證過了,用電腦再來驗證其他兩個。

  • 北師大初中數(shù)學九年級上冊利用三邊判定三角形相似2教案

    北師大初中數(shù)學九年級上冊利用三邊判定三角形相似2教案

    (一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.

  • 北師大初中數(shù)學九年級上冊利用三邊判定三角形相似1教案

    北師大初中數(shù)學九年級上冊利用三邊判定三角形相似1教案

    同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結:(1)各個圖形中的三角形均為格點三角形,可以根據(jù)勾股定理求出各邊的長,然后根據(jù)三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學生已學的知識入手,通過設置問題,引導學生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關系.讓學生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生與他人交流、合作的意識和品質(zhì).

  • 北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    方法總結:本題結合三角形內(nèi)角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.

  • 北師大初中數(shù)學九年級上冊利用兩邊及夾角判定三角形相似2教案

    北師大初中數(shù)學九年級上冊利用兩邊及夾角判定三角形相似2教案

    一、教學目標1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學結論的過程;通過畫圖、度量等操作,培養(yǎng)學生獲得數(shù)學猜想的經(jīng)驗,激發(fā)學生探索知識的興趣,體驗數(shù)學活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習2就是通過讓學生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.

  • 北師大初中七年級數(shù)學下冊三角形的三邊關系教案

    北師大初中七年級數(shù)學下冊三角形的三邊關系教案

    方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力

  • 北師大初中八年級數(shù)學下冊不等關系教案

    北師大初中八年級數(shù)學下冊不等關系教案

    A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結:用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.

  • 北師大初中數(shù)學九年級上冊菱形的判定2教案

    北師大初中數(shù)學九年級上冊菱形的判定2教案

    方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

  • 北師大初中數(shù)學九年級上冊菱形的判定1教案

    北師大初中數(shù)學九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  • 北師大初中數(shù)學九年級上冊矩形的判定2教案

    北師大初中數(shù)學九年級上冊矩形的判定2教案

    2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

  • 北師大初中數(shù)學九年級上冊矩形的判定1教案

    北師大初中數(shù)學九年級上冊矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.

  • 北師大初中數(shù)學八年級上冊平行線的判定1教案

    北師大初中數(shù)學八年級上冊平行線的判定1教案

    (2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結:解此類題應首先結合圖形猜測結論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!