1.能從統(tǒng)計(jì)圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點(diǎn))2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢(shì).(難點(diǎn))一、情境導(dǎo)入某次射擊比賽,甲隊(duì)員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計(jì)圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計(jì)這10次射擊成績的平均數(shù),再具體算一算,看看你的估計(jì)水平如何.二、合作探究探究點(diǎn)一:從折線統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開方而是乘法,但為了方便起見,我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
本節(jié)課開始時(shí),首先由一個(gè)要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過問題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過對(duì)實(shí)際問題的解決來引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問題的能力。3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.
屬于此類問題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
情景感知概括運(yùn)用設(shè)疑誘導(dǎo)動(dòng)手操作合作交流嘗試活動(dòng)啟發(fā)引導(dǎo)類比發(fā)現(xiàn)演練結(jié)合觀察分析自主探索問題討論利用嘗試活動(dòng)“我來當(dāng)老師!”給學(xué)生提供設(shè)計(jì)問題的機(jī)會(huì),培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度,勇于質(zhì)疑、敢于創(chuàng)新的良好習(xí)慣及數(shù)學(xué)應(yīng)用能力。例1、根據(jù)因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產(chǎn)生錯(cuò)誤的對(duì)象讓學(xué)生辨析,促使他們認(rèn)識(shí)概念的本質(zhì)、確定概念的外延,從而形成良好的認(rèn)知結(jié)構(gòu)。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數(shù)式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學(xué)生進(jìn)一步體會(huì)用分解因式解決相關(guān)問題的簡(jiǎn)捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
(2)∵點(diǎn)G是BC的中點(diǎn),BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計(jì)1.平行四邊形的判定定理3:對(duì)角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點(diǎn)到另一條直線的距離都相等,這個(gè)距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過分組討論、操作探究以及合作交流等方式來進(jìn)行,在探究兩條平行線間的距離時(shí),要讓學(xué)生進(jìn)行合作交流.在解決有關(guān)平行四邊形的問題時(shí),要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷比較簡(jiǎn)單分?jǐn)?shù)大小的過程,并能解決簡(jiǎn)單的實(shí)際問題.設(shè)計(jì)本課時(shí),我注重為學(xué)生創(chuàng)設(shè)恰當(dāng)?shù)膮⑴c,實(shí)踐探究必備的空間,讓學(xué)生在主動(dòng)參與學(xué)習(xí)活動(dòng)的過程中,引導(dǎo)學(xué)生有效思考,撐握簡(jiǎn)單分?jǐn)?shù)大小比較的方法,活動(dòng)重在讓學(xué)生經(jīng)歷探索與發(fā)現(xiàn)的過程,使其在課堂中既有獲取知識(shí),能力也得到了培養(yǎng)。本科課堂教學(xué)我從學(xué)生感興趣的游戲和故事兩方面入手:游戲?qū)τ诤⒆右恢笔歉信d趣的話題,同分母分?jǐn)?shù)比較大小在了解分?jǐn)?shù)的意義之后,對(duì)于學(xué)生學(xué)習(xí)這一部分來說是比較簡(jiǎn)單的,如何提高學(xué)生的學(xué)習(xí)興趣,我脫離書本這一載體設(shè)計(jì)了莫分?jǐn)?shù)比大小這一游戲,在課堂上學(xué)生自主地參與活動(dòng),通過讓學(xué)生動(dòng)手做、動(dòng)腦想:你想摸到幾顆棋子?為什么?、動(dòng)口說:比這個(gè)分?jǐn)?shù)大的分?jǐn)?shù)還有?比這個(gè)分?jǐn)?shù)小的分?jǐn)?shù)還有?,使學(xué)生在活動(dòng)中發(fā)現(xiàn)問題分母相同的分?jǐn)?shù)如何比較大???尋求規(guī)律分母相同的分?jǐn)?shù)比較大小的方法。
[設(shè)計(jì)意圖]節(jié)環(huán)節(jié)的設(shè)置是為了使學(xué)生在掌握不等式性質(zhì)的基礎(chǔ)之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學(xué)生需求,更能滿足學(xué)有余力的學(xué)生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結(jié)合的思想,學(xué)生通過參與活動(dòng),體會(huì)挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識(shí)給他們帶來的快感中完成本節(jié)課的學(xué)習(xí),(六)課堂小結(jié)最后,凱旋歸來話收獲:通過本節(jié)課的學(xué)習(xí),你收獲到了什么?學(xué)生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學(xué)會(huì)了不等式的三條基本性質(zhì)2、學(xué)會(huì)了用字母來表示不等式的性質(zhì)3、學(xué)生不等式與等式的區(qū)別等等;學(xué)生在回答的時(shí)候,老師加以評(píng)價(jià)和表揚(yáng)并展示主要內(nèi)容;這里教師要再次強(qiáng)調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向要改變,數(shù)學(xué)思想的方法是數(shù)學(xué)的靈魂,這節(jié)課我們體驗(yàn)了三種數(shù)學(xué)思想,一是類比的思想,二是數(shù)形結(jié)合的思想,三是分類討論的思想,
說明:8.2.1在表示范表演的點(diǎn)畫空心圓圈,表不包括這一點(diǎn),表示大時(shí)就往右拐;圖8.2.2在表示-2的點(diǎn)畫黑點(diǎn)表示包括這一點(diǎn),表示小時(shí)往左拐。3,講解補(bǔ)充例題,例1:判斷:①x=2是不等式4x<9的一個(gè)解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設(shè)計(jì)意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點(diǎn))4.鞏固練習(xí):課本44頁練習(xí)2,3題5.歸納總結(jié),結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點(diǎn)知識(shí)和學(xué)習(xí)方法,達(dá)到掌握重點(diǎn),順理成章的目的。6.作業(yè):課本49頁習(xí)題1,2題
1.通過實(shí)例體會(huì)一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會(huì)利用數(shù)軸解較簡(jiǎn)單的一元一次不等式組。4.培養(yǎng)學(xué)生分析、解決實(shí)際問題的能力。5.通過實(shí)際問題的解決,體會(huì)數(shù)學(xué)知識(shí)在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問題過程中勤于思考、樂于探究,體驗(yàn)解決問題策略的多樣性,體驗(yàn)數(shù)學(xué)的價(jià)值。四、教學(xué)重、難點(diǎn)分析教學(xué)重點(diǎn):1.理解有關(guān)不等式組的概念.2.會(huì)解由兩個(gè)一元一次不等式組成的不等式組.教學(xué)難點(diǎn):在數(shù)軸上確定解集.五、教學(xué)手段分析本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡(jiǎn)單、形象生動(dòng)、反饋及時(shí)等優(yōu)點(diǎn),直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動(dòng)積極性。
設(shè)計(jì)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.但依然有部分同學(xué)會(huì)出現(xiàn)問題,如對(duì)首項(xiàng)出現(xiàn)負(fù)號(hào)時(shí)不能正確處理,此時(shí),需要老師進(jìn)一步引導(dǎo).第四環(huán)節(jié) 課堂小結(jié)從今天的課程中,你學(xué)到了哪些知識(shí)?你認(rèn)為提公因式法與單項(xiàng)式乘多項(xiàng)式有什么關(guān)系?怎樣用提公因式法分解因式?設(shè)計(jì)目的:通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)確定公因式的方法及提公因式法的步驟的理解,進(jìn)一步清楚地了解提公因式法與單項(xiàng)式乘多項(xiàng)式的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。第五環(huán)節(jié) 當(dāng)堂檢測(cè)把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設(shè)計(jì)目的:檢驗(yàn)學(xué)生的目標(biāo)達(dá)成情況,其中第五小題供學(xué)有余力的學(xué)生選作。第六環(huán)節(jié) 課后反思教學(xué)反思
活動(dòng)四:自主學(xué)習(xí),尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫???”同桌演示尺規(guī)作圖。最后折紙驗(yàn)證,使整個(gè)學(xué)習(xí)過程更加嚴(yán)謹(jǐn)。我將用下面這個(gè)課件給學(xué)生展示作圖過程。再次回顧情境,讓學(xué)生完成情境中的問題。(三)講練結(jié)合,鞏固新知第一個(gè)題目是直接運(yùn)用性質(zhì)解決問題,比較簡(jiǎn)單,面向全體學(xué)生。我還設(shè)計(jì)了第二個(gè)題目,想訓(xùn)練學(xué)生審題的能力。(四)課堂小結(jié)在學(xué)生們共同歸納總結(jié)本節(jié)課的過程中,讓學(xué)生獲得數(shù)學(xué)思考上的提高和感受成功的喜悅并進(jìn)一步系統(tǒng)地完善本節(jié)課的知識(shí)。(五)當(dāng)堂檢測(cè)為了檢測(cè)學(xué)生學(xué)習(xí)情況,我設(shè)計(jì)了當(dāng)堂檢測(cè)。第一個(gè)題目,讓學(xué)生學(xué)會(huì)轉(zhuǎn)化的思想來解決問題;第二個(gè)題目練習(xí)尺規(guī)作圖。
煤的價(jià)格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費(fèi)用外,還需其他費(fèi)用400元,甲產(chǎn)品每噸售價(jià)4600元;生產(chǎn)1噸乙產(chǎn)品除原料費(fèi)用外,還需其他費(fèi)用500元,乙產(chǎn)品每噸售價(jià)5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因?yàn)榈V石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時(shí),那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動(dòng)態(tài)變化的兩個(gè)量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因?yàn)?m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時(shí),要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
(1)用簡(jiǎn)潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問題時(shí),可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計(jì)算解決問題。通過列出關(guān)系式解決問題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計(jì)1.二元一次方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對(duì)應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí),充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.