提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中數(shù)學七年級上冊科學記數(shù)法說課稿

  • 北師大初中數(shù)學九年級上冊幾何問題及數(shù)字問題與一元二次方程2教案

    北師大初中數(shù)學九年級上冊幾何問題及數(shù)字問題與一元二次方程2教案

    三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關緝私巡邏艇在東海海域執(zhí)行巡邏任務時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?

  • 北師大初中數(shù)學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數(shù)學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

  • 北師大初中數(shù)學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數(shù)學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

  • 北師大初中數(shù)學九年級上冊利用兩邊及夾角判定三角形相似2教案

    北師大初中數(shù)學九年級上冊利用兩邊及夾角判定三角形相似2教案

    一、教學目標1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學結論的過程;通過畫圖、度量等操作,培養(yǎng)學生獲得數(shù)學猜想的經驗,激發(fā)學生探索知識的興趣,體驗數(shù)學活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習2就是通過讓學生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.

  • 北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題1教案

    北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題1教案

    ∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據實際問題的要求,確定用哪些數(shù)學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數(shù),有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數(shù)式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據題意,選擇合理的答案.經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數(shù)學應用意識和能力.

  • 北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題2教案

    北師大初中數(shù)學九年級上冊利用一元二次方程解決面積問題2教案

    四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

  • 北師大初中數(shù)學九年級上冊位似多邊形及其性質2教案

    北師大初中數(shù)學九年級上冊位似多邊形及其性質2教案

    (3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學生自己完成)三、課堂練習 活動3 教材習題小結:談談你這節(jié)課學習的收獲.

  • 北師大初中數(shù)學九年級上冊位似多邊形及其性質1教案

    北師大初中數(shù)學九年級上冊位似多邊形及其性質1教案

    ①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結:(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關鍵是畫出圖形中頂點的對應點.畫圖的方法大致有兩種:一是每對對應點都在位似中心的同側;二是每對對應點都在位似中心的兩側.(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設計

  • 北師大版初中數(shù)學九年級上冊配方法說課稿

    北師大版初中數(shù)學九年級上冊配方法說課稿

    用你的語言描述一下配方法解一元二次方程的基本步驟和需注意的問題。 教師引導學生進行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項。鞏固對課堂知識的理解和掌握,同時進一步體會解一元二次方程時降次的基本策略和轉化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內容,又有讓學有余力的學生有思考和提升的空間。思考題為后面深入研究配方法,完善對配方法的認識做準備。 同時讓學生感受到數(shù)學學習在實際生活中的作用,感受數(shù)學的美。五、板書設計我將板書分成了兩部分,重點突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當?shù)木毩暎唵蚊髁?,重點突出。六、教學評價與反思本節(jié)課我根據學生的特點采用合作交流探究式學西方法教學,讓學生動起來,感受數(shù)學學習的樂趣。讓學生更加愛學數(shù)學。

  • 北師大版初中七年級數(shù)學下冊用尺規(guī)作角說課稿

    北師大版初中七年級數(shù)學下冊用尺規(guī)作角說課稿

    活動目的:通過兩個圖案設計,一個是讓學生獨立思考,借助于已經學習的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進一步鞏固應用;另一個是讓學生根據作圖步驟借助于尺規(guī)完成圖案,進一步培養(yǎng)學生幾何語言表達能力,并積累尺規(guī)作圖的活動經驗?;顒幼⒁馐马棧焊鶕n堂時間安排,可靈活進行處理,既可以作為本節(jié)課的實際應用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學生都學到有價值的數(shù)學。四、 教學設計反思1.利用現(xiàn)實情景引入新課,既能體現(xiàn)數(shù)學知識與客觀世界的良好結合,又能喚起學生的求知欲望和探求意識。而在了解基礎知識以后,將其進行一定的升華,也能使學生明白學以致用的道理、體會知識的漸進發(fā)展過程,增強思維能力的培養(yǎng)。同時,在整個探究過程中,怎樣團結協(xié)作、如何共同尋找解題的突破口,也是學生逐步提高的一個途徑。

  • 北師大版初中數(shù)學九年級上冊黃金分割說課稿

    北師大版初中數(shù)學九年級上冊黃金分割說課稿

    教學設計說明:本節(jié)課從學生接觸到的實際問題出發(fā),結合新課程標準的理念,創(chuàng)造性地使用教材而設計的一節(jié)課,是前面線段的比、成比例線段等知識在現(xiàn)實生活中的應用. 一開始情境的創(chuàng)設——彩色圖片的投影,給學生以美的感覺,激發(fā)學生的求知欲.通過實際生活中的例子,讓學生自己發(fā)表自己的看法,培養(yǎng)學生的審美情趣,又從學生最感興趣的奧運會的比賽中引出今天所要學習的內容,從而進一步培養(yǎng)學生的愛國主義情感.在教學設計中,充分發(fā)揮了學生的主觀能動性,通過小組討論,師生間的合作交流,解決了本節(jié)課的重點和難點.讓每個學生都能從同伴的交流中獲益,同時也培養(yǎng)了學生的合作意識,提高了學生的動手操作的能力.本節(jié)課在教學設計中主要運用了引導探究、分組討論的教學方法;引導學生自主探究、合作交流的研討學習方式,確立了學生的主體地位.

  • 北師大版初中數(shù)學九年級上冊投影說課稿

    北師大版初中數(shù)學九年級上冊投影說課稿

    1.多媒體的合理應用,可極大的激發(fā)學生的學習興趣,提高教學效果.在本節(jié)課的“情境引入”這一教學環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學生以視覺沖擊,產生了視覺和心理的震撼,這樣在課堂“第一時間”抓住了學生的注意力、極大的激發(fā)了學生的學習熱情,將十分有利于后面教學活動的開展,提高課堂教學效果.2.附有挑戰(zhàn)性的“問題(或活動)”、層層深入的“問題串”可激發(fā)學生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動”這一教學環(huán)節(jié)中的“做一做”設計的4個活動,由簡單的“模仿”到“創(chuàng)作設計、觀察思考”循序漸進、挑戰(zhàn)性逐漸增大,不斷激發(fā)學生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學運用”這一教學環(huán)節(jié)中的“例2”設計的2個問題層層深入,現(xiàn)實情境味很濃,學生做起來饒有興趣.

  • 北師大版初中數(shù)學九年級上冊因式分解說課稿

    北師大版初中數(shù)學九年級上冊因式分解說課稿

    第三環(huán)節(jié)。嘗試練習,信息反饋。讓學生嘗試練習:課本p152第3題,并引導中下學生看p152例題,教師及時點撥講評?!鹘處煱才胚@一過程,完全放手讓學生自主進行,充分暴露學生的思維過程,展現(xiàn)學生生動活潑、主動求知和富有的個性,使學生真正成為學習的主體,使因式分解與整式的乘法的關系得到正強化。第四環(huán)節(jié)。小結階段。這是最后的一個環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學生展開討論,得到下列結論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進行分解。由此可知,上式不是因式分解。進而,教師呈現(xiàn)因式分解定義?!鹘處煱才胚@一過程意圖是:學生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開始分散。

  • 北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

    北師大初中九年級數(shù)學下冊30°,45°,60°角的三角函數(shù)值2教案

    教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關系?二、導讀:仔細閱讀課本內容后完成下面填空:

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程1教案

    解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉化為數(shù)學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數(shù)的關系式,將實際問題轉化為純數(shù)學問題;(2)應用有關函數(shù)的性質作答.

  • 北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據對稱軸是x=-3,求出b=6,即可得出答案;(2)根據CD∥x軸,得出點C與點D關于x=-3對稱,根據點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.

  • 北師大初中九年級數(shù)學下冊利用三角函數(shù)測高2教案

    北師大初中九年級數(shù)學下冊利用三角函數(shù)測高2教案

    問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據測量數(shù)據,就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據tan x= ,可以求出tan x的值,然后根據例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

上一頁123...111213141516171819202122下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!