1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課堂達標訓(xùn)練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
(3)設(shè)點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習的主體地位,教師要把激發(fā)學(xué)生學(xué)習熱情和提高學(xué)生學(xué)習能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
劉紹棠,中國當代著名鄉(xiāng)土文學(xué)作家,1936年2月出生于河北通縣(今北京通州區(qū))大運河畔的儒林村,1949年開始發(fā)表作品,一生留下了500多萬字的鄉(xiāng)土文學(xué)作品,包括《地火》《京門臉子》等多部長篇小說,《蒲柳人家》《運河的槳聲》等多部中篇小說,以及《青枝綠葉》《蛾眉》等多部短篇小說集。他的作品在國內(nèi)多次獲獎,在國際上亦有影響。劉紹棠的作品內(nèi)容各不相同,但都藝術(shù)地再現(xiàn)了其家鄉(xiāng)大運河畔不同歷史時期的風土人情和社會風貌,描繪了充滿詩情畫意的鄉(xiāng)風水色、世俗人情。20世紀80年代以來,劉紹棠不遺余力地倡導(dǎo)鄉(xiāng)土文學(xué),創(chuàng)作上堅持“中國氣派,民族風格,地方特色,鄉(xiāng)土題材”。文學(xué)評論家指出,他的作品格調(diào)清新淳樸,鄉(xiāng)土色彩濃郁,形成了獨具特色的大運河鄉(xiāng)土文學(xué)風格。
教學(xué)目標:1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學(xué)重點:特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點:靈活應(yīng)用特殊角的三角函數(shù)值進行計算.☆ 預(yù)習導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細閱讀課本內(nèi)容后完成下面填空:
本單元主要圍繞著有關(guān)瀕臨滅絕的動物這一話題,學(xué)習了應(yīng)該怎樣保護我們的環(huán)境,以及就某一問題展開辯論。目標提示語言目標能夠運用所學(xué)知識,就某一問題展開辯論。認知目標1、復(fù)習一些語法:現(xiàn)在進行時、一般現(xiàn)在時、用used to 表示一般過去時、現(xiàn)在完成時、一般過去時的被動語態(tài)。2、學(xué)會表達同意和不同意。3、學(xué)會以下基本句型:We’re trying to save the manatees.Manatees eat about 100 pounds of food a day.There used to be a lot of manatees.In 1972,it was discovered that they were endangered.Some of the swamps have become polluted.情感目標了解一些瀕臨滅絕的動物的生活習性和瀕臨滅絕的原因,教育學(xué)生應(yīng)該如何保護環(huán)境。教學(xué)提示充分利用多媒體等教學(xué)設(shè)備,創(chuàng)設(shè)與本課話題相關(guān)的情境,如各種不同種類的動物、動物園以及有關(guān)環(huán)境的畫畫等等。圍繞著本單元的教學(xué)目標,設(shè)計一些貼近學(xué)生實際的教學(xué)任務(wù),如讓學(xué)生談?wù)撟约鹤钕矚g的動物,如何拯救瀕危動物,如何保護環(huán)境等等。讓學(xué)生根據(jù)所學(xué)知識,就動物園是否對動物有利以及其他的話題進行辯論。
教學(xué)目標(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準備多媒體演示
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
【示例二】我喜歡“斫去桂婆娑,人道是,清光更多”。這里的“桂婆娑”指帶給人民黑暗的婆娑桂影,它不僅包括南宋朝廷內(nèi)外的投降勢力,也包括了金人的勢力。作者在這一句中,運用神話傳說,以超現(xiàn)實的奇思妙想,表達渴望掃除黑暗,讓光明普照人間的愿望?!驹O(shè)計意圖】在這一環(huán)節(jié),引導(dǎo)學(xué)生先理解詞作的意思和情感再誦讀,加深學(xué)生對詞作的印象,提升學(xué)生對詞作的誦讀感悟能力。五、反復(fù)誦讀,默寫詩詞1.學(xué)生獨立背誦。2.同桌互相檢查背誦。3.開展背誦比賽。4.集體默寫四首詞。結(jié)束語:誦讀古詩詞,可以陶冶我們的情操,激發(fā)我們的想象力,與古人對話。希望同學(xué)課下能自主閱讀一些經(jīng)典古詩詞,在感受它們魅力的同時提升我們的文學(xué)素養(yǎng)。【設(shè)計意圖】在前面幾個環(huán)節(jié),學(xué)生已經(jīng)從不同層次誦讀了四首詞,對這四首詞有了一定的理解。本環(huán)節(jié)讓學(xué)生在此基礎(chǔ)上用不同方式背誦,加深記憶。
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
設(shè)計意圖:最后是當堂訓(xùn)練,目標檢測,這一環(huán)節(jié)要盡量讓學(xué)生獨立完成,使訓(xùn)練高效,在學(xué)生訓(xùn)練時教師要巡回輔導(dǎo),重點關(guān)注課堂表現(xiàn)不太突出的學(xué)生,由于本課時內(nèi)容多,訓(xùn)練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓(xùn)練的時間預(yù)估不足。四、教學(xué)思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設(shè)符合學(xué)生實際的問題情境,讓學(xué)生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學(xué)生的應(yīng)用意識及分析問題解決問題的能力,培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力及轉(zhuǎn)化的思維方法。2.充分相信學(xué)生并為學(xué)生提供展示自己的機會,課堂上要把激發(fā)學(xué)生學(xué)習熱情和獲得學(xué)習能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學(xué)生形成積極主動的求知態(tài)度。
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
1.題目具有開放性,可以實寫,也可以虛寫。展開聯(lián)想和想象,將自己想到的全列出來,然后再從中確定寫作重點。2.從題目看,可以靈活選擇文體。比如,可以以寫景或抒情為主,也可以進行議論,或者虛構(gòu)一個故事等,要力求有創(chuàng)意。3.注意表達上的創(chuàng)新,豐富的詞語、恰當?shù)男揶o等,都可以為文章增色。2.寫作指導(dǎo)。(1)審題立意。本題具有開放性,有實虛兩重意義。展開聯(lián)想和想象,可以寫實,也可以寫它的象征意義,還可以實虛結(jié)合?!按禾斓纳省奔瓤梢灾脯F(xiàn)實中的春天的各種色彩,也可以指象征意義中的“春天”帶著“色彩”(以表達某種心情)。如自然的春天、社會的春天、心靈的春天等等。(2)文體選擇與表達。在文體方面,可以寫成寫景或抒情的散文,也可以寫議論文,或者寫成表達“春天的色彩”這一主題的記敘文。在表達上應(yīng)有創(chuàng)新,可以用豐富的詞匯、變換的句式、新穎的修辭為文章增色。尤其在作文形式上要有所創(chuàng)新。
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點的對應(yīng)點.畫圖的方法大致有兩種:一是每對對應(yīng)點都在位似中心的同側(cè);二是每對對應(yīng)點都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設(shè)計
明確:“卷”“奔”這兩個動詞極為生動,描繪出了“大地”的動蕩、不安定和被裹挾著的頗有氣勢的沖過來的動態(tài)。(2)詩歌之中的“風”“雨”僅指自然界的風雨嗎?還有什么象征意義?“大地”又有什么深層內(nèi)涵?明確:它們不僅僅是指自然界中的風雨,對于“我”這樣一個“年輕”沒有人生閱歷與生活經(jīng)驗的“舵手”來說,它們也象征著人生的坎坷與遭遇。這首詩作于二十世紀三十年代,這里遭受“風雨”侵襲的“大地”指的是當時風雨如晦的中國局勢。這樣來說,“風雨”又有了一層更深層次的含義:當時的中國社會所承受的苦難。(3)面對這樣的“大地”,“我”又是一個怎樣的形象?明確:“我”作為一個有志向的敢于像舵手一樣乘風破浪的有為青年,面對苦難中的祖國,產(chǎn)生了強烈責任感、使命感與對中國社會前途、對民族命運的深深的擔憂。
明確:提出“生與義不可得兼,舍生而取義者也”的論點后,首先從正面指出人之所以能“舍生取義”,是因為人皆有“欲生不為茍得,惡死有所不辟”的思想。然后再從反面說明,如果人只是欲生惡死,那么什么事都可以做得出來;可是事實上,“義”超過了“生”,所以人能夠不貪生,不避死。這種羞惡之心,人人皆有,賢者更能保持而不喪失。接著舉例說明,以乞人不受不義之食為例,從正面論證“舍生取義”是人之共性。以萬鐘雖好也不能受為例,從反面強調(diào)了舍義取利是喪失本心。隨后用一組排比句,對不辯禮義而貪求富貴的行為加以批判,并以“此之謂失其本心”收束全文,照應(yīng)開頭。3.列舉本文主要的論證方法,并說明其作用。明確:(1)比喻論證。用比喻論證引出論點。以生活常理為喻引出生與義無法兼顧的情況下應(yīng)該舍生而取義的結(jié)論(主旨)。