目標(biāo)導(dǎo)學(xué)二:評價人物形象 文中的牧羊人給作者留下了怎樣的印象?請從文中找出相關(guān)語句,并進(jìn)行概括。作者評價牧羊人的句子有:(1)他很少說話,但可以感覺得出是一個充滿自信、意志果斷的人,因為他在這個荒涼的高地砌起一棟石頭房子。(2)盡管生活并不富裕,但牧羊人的外表卻很整潔。他的胡子刮得干干凈凈,衣服也一針一線地仔細(xì)縫過,看不出任何補(bǔ)丁。(3)戰(zhàn)爭對他一點兒影響都沒有,這段時間他心無旁騖地一直在種樹。(4)更不曾有人想像過光憑一個人的毅力和愛心,能讓大自然有所改變。(5)這個男人告訴我們,只靠身體力行和蘊(yùn)藏的品德,便能將荒地變成沃土。……所以,牧羊人是一個充滿自信、意志果斷、外表整潔、心無旁騖,有毅力、有愛心、身體力行、慷慨無私的人。
二、教學(xué)新課?目標(biāo)導(dǎo)學(xué)一:初讀課文,把握情節(jié)自由朗讀課文,感知故事情節(jié),并思考下列問題。1.請你用口頭語言,再現(xiàn)這個生動有趣的故事。2.女媧為什么要創(chuàng)造人類?(用課文內(nèi)容回答。)她看到周圍的景象感到十分的孤獨,當(dāng)她走到池水旁時,照見了自己的面容,看到自己的影子,忽然靈機(jī)一動,就想到了為什么不造和自己一樣的生物呢。于是人類就誕生了。3.女媧是怎樣創(chuàng)造出人類的?有兩種方法:第一種方法:用黃泥揉成團(tuán)狀成人。第二種方法:用一條枯藤伸入泥潭,攪成泥漿,向地面揮灑,泥點濺落的點,就出現(xiàn)了人。4.女媧怎么樣讓人類繁衍生息?把人分成男人和女人,婚姻法,讓他們?nèi)?chuàng)造后代。?目標(biāo)導(dǎo)學(xué)二:再讀課文,把握人物故事中哪些內(nèi)容體現(xiàn)出女媧的“神”性?故事中哪些內(nèi)容體現(xiàn)出女媧的“人”性?
課文開頭寫道:“老師安妮·莎莉文來到我家的這一天,是我一生中最重要的一天”,在作者的心目中莎莉文老師就是光明的使者,她到來時作者這樣描述自己的心情感受:“我心里無聲地呼喊著:‘光明!光明!快給我光明!’恰恰正在此時,愛的光明照到了我的身上。她就是那個來對我啟示世間的真理、給我深切的愛的人?!闭n文更多地還是通過寫莎莉文老師對“我”的理解、關(guān)愛、教育的具體言行,來表達(dá)作者對莎莉文老師的感激、崇敬之情。3.文中的海倫和莎莉文老師給你留下了怎樣的印象?海倫是一個好學(xué)、聰明、堅毅、情感豐富、有強(qiáng)烈的求知欲的女孩。莎莉文是一個愛海倫,講究教育方法藝術(shù),因勢利導(dǎo)、循循善誘、抓住教育時機(jī)的出色的教育藝術(shù)家。4.如何理解標(biāo)題“再塑生命的人”的含義?“再塑生命”是“重新塑造、獲得生命”的意思,文中是指“愛的光明照到了我的身上”。在莎莉文老師教育下,海倫的靈魂被喚醒,再次擁有了“光明、希望、快樂和自由”。莎莉文讓海倫又回到自然,理解自然,并懂得什么是“愛”。
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個別輔導(dǎo),學(xué)生完畢教師給予評估肯定。II鞏固練習(xí):限時完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當(dāng) 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應(yīng) 的任意一對對應(yīng)值的積來求得,只要k確定了,這個函數(shù)就確定了。
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認(rèn)識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
(2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習(xí):1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準(zhǔn)確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實際操作、思考、交流等過程中增強(qiáng)學(xué)生的實踐意識和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.
2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗.這次的試驗點應(yīng)該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識的發(fā)生過程,并會運(yùn)用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.
方法三:一個同學(xué)先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會證明過程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實數(shù),但在解決實際問題的過程中,自變量的取值范圍要根據(jù)實際情況來確定.解題過程中應(yīng)該注意對題意的正確理解.三、板書設(shè)計反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識到理性認(rèn)識的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗數(shù)學(xué)來源于生活實際,并為生活實際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
(2)相似多邊形的對應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時,兩個多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學(xué)生活動:學(xué)生通過例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應(yīng)重點關(guān)注:(1)學(xué)生參與活動的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4
預(yù)設(shè) 1.樹立保護(hù)文化遺產(chǎn)的意識,從小事做起,從自身做起。2.向周邊的人宣傳保護(hù)文化遺產(chǎn)的重要性,讓人們明白文化遺產(chǎn)是民族精神的底蘊(yùn)、民族文化的根基。3.向當(dāng)?shù)卣块T提出保護(hù)文化遺產(chǎn)的合理方案:(1)必須以法律條文的形式進(jìn)行規(guī)范和監(jiān)督,維護(hù)重獎,破壞嚴(yán)懲。(2)開辦文化遺產(chǎn)學(xué)習(xí)、講座、知識競賽等活動。讓人們耳濡目染,感受中華傳統(tǒng)文化遺產(chǎn)的魅力和文化遺產(chǎn)存在的必要性。4.用實際行動保護(hù)它,同破壞它的人進(jìn)行堅決的斗爭。結(jié)合教材P148“資料三”和P149“資料四”,以“我與文化遺產(chǎn)”為話題,自擬題目,寫一篇作文,談?wù)勀銓ξ幕z產(chǎn)保護(hù)的認(rèn)識和思考?!驹O(shè)計意圖】本環(huán)節(jié)意在讓學(xué)生在參與活動的基礎(chǔ)上,進(jìn)一步反思。通過問題設(shè)計和寫作訓(xùn)練,進(jìn)一步梳理探索過程,擴(kuò)展實踐探索的思想廣度,將活動引入到更深的層次,提升了活動的效果。
預(yù)設(shè) (1)蘇州某生物科技有限公司生產(chǎn)假口罩和知名校長胡紅梅抄襲的行為與中華民族的傳統(tǒng)美德相悖。(2)只有講誠信,社會才會文明,國家才會興盛。3.學(xué)生列舉身邊關(guān)于誠信的故事,小組交流,全班展示,師適時點撥、總結(jié)、評價。師小結(jié):堅持誠信,就會贏得信任,誠信是獲得信任的前提。【設(shè)計意圖】通過事例分析,引導(dǎo)學(xué)生對不誠信行為的認(rèn)識,從而進(jìn)一步了解誠信的重要性。四、演講實踐,說“信”學(xué)生活動:1.根據(jù)自己的理解,寫一篇演講稿,說說如何才能做一個有誠信的人。2.全班交流討論。教師活動:1.根據(jù)學(xué)生的交流,及時做出總結(jié)評價。2.歸納總結(jié),引導(dǎo)學(xué)生形成“說誠信話,做誠信事,做誠信人”的行為準(zhǔn)則。師小結(jié):誠信是為人之本,相信今天的誠信教育僅僅是我們邁向成功人生的第一步。誠信的力量可以點石成金。我們要崇尚誠信:身披一襲燦爛,心系一份執(zhí)著,帶著誠信上路。
整個的螳螂巢,大概可以分成三個部分。其中的一部分是由一種小片做成的,并且排列成雙行,前后相互覆蓋著,就好像屋頂上的瓦片一樣。這種小片的邊沿,有兩行缺口,是用來做門路的。在小螳螂孵化的時候,就是從這個地方跑出來的。至于其他部分的墻壁,全都是不能穿過的。螳螂的卵在巢穴里面堆積成好幾層。其中每一層,卵的頭都是向著門口的。前面我已經(jīng)提到過了,那道門有兩行,分成左、右兩邊。所以,在這些幼蟲中,有一半是從左邊的門出來的,其余的則從右邊的門出來。閱讀感悟:作者介紹螳螂的巢時不僅對它們用的材料進(jìn)行了說明,還對這兩種材料做了進(jìn)一步分析,而且對整個巢的構(gòu)造做了詳細(xì)的說明。這些正好體現(xiàn)出作者觀察仔細(xì)、認(rèn)真,樂于探究的精神。(2)法布爾科學(xué)實驗的方法。綜合上面兩個片段,法布爾在研究昆蟲時,經(jīng)常采用的是觀察法和實驗法。課件出示:觀察法可以直接用肉眼,也可以借助放大鏡、顯微鏡等儀器,或利用照相機(jī)、錄像機(jī)、攝像機(jī)等工具,有時還需要測量。