1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導(dǎo)致錯誤.K探究點二:利用科學(xué)計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個為正,則另一個就用負表示.理解表中的正負號表示的含義,根據(jù)條件計算出每天的水位即可求解;(2)只要觀察星期日的水位是正負即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實際問題轉(zhuǎn)化成數(shù)學(xué)問題.探究點二:有理數(shù)的加減混合運算在生活中的其他應(yīng)用
1.師要注意區(qū)別教學(xué)內(nèi)容是否適合進行小組合作探究。這種學(xué)習(xí)是否每節(jié)課都需要。學(xué)生的小組學(xué)習(xí)是否在走過場,或者說流于形式。教師要注意營造自由自在的學(xué)習(xí)氛圍,控制討論的局面,如討論中是否有人進行人身攻擊,是否有人壟斷發(fā)言權(quán)而有的人卻一言不發(fā),是否有人竊竊私語,教師要在巡視及參與中“察言觀色”,及時調(diào)控。2.教師要充分注意精心設(shè)計的問題。教師的教學(xué)設(shè)計是否合適,是做秀還是教學(xué)的需要。這不僅需要教師的認同,還需要課程的認同,學(xué)生的認同。因此,對于適合采用小組合作探究方式的教學(xué)內(nèi)容,我們一定要根據(jù)課程標準的三維目標學(xué)生現(xiàn)有的認知程度和興趣以及本課要解決的問題和教學(xué)任務(wù)來精心設(shè)計問題。3.要注重小組合作探究的組織,進行適當有效的指導(dǎo)。教師要轉(zhuǎn)換自己的角色,從傳授者變成指導(dǎo)者、參與者、監(jiān)控者和幫助者,并切實注意自身行為的方法和效果,及時進行調(diào)整。
討論交流:正是靠著這種民族精神,我國建成了一個個大油田。到1965年,中國的石油基本實現(xiàn)自給。5、補充資料1964年10月16日和1967年6月17日,中國西北羅布泊大漠中,升起了蘑菇狀的煙云。我國相繼成功爆炸了第一顆原子彈和第一顆氫彈,成為繼美國、蘇聯(lián)、英國之后第四個同時擁有原子彈和核彈的國家。中國從此擁有了保家衛(wèi)國、捍衛(wèi)和平的核力量。交流鄧稼先故事1950年8月,鄧稼先在美國獲得博士學(xué)位九天后,便謝絕了恩師和同校好友的挽留,毅然決定回國。同年10月,鄧稼先來到中國科學(xué)院近代物理研究所任研究員。在北京外事部門的招待會上,有人問他帶了什么回來。他說:“帶了幾雙眼下中國還不能生產(chǎn)的尼龍襪子送給父親,還帶了一腦袋關(guān)于原子核的知識。”此后的八年間,他進行了中國原子核理論的研究。
(1)這個故事的什么地方最令你感動?(2)你從這個故事中看到鄧稼先怎樣的奉獻精神?1950年,新中國誕生的消息傳到了大洋彼岸,年僅 26歲的鄧稼先剛剛?cè)〉脤W(xué)位,毅然放棄了在美國優(yōu)越的生活和工作條件,沖破重重阻撓回到祖國。1958年,他接受國家最高機密任務(wù)秘密研制原子彈。從此,鄧稼先隱姓埋名28年,連家人也不知他的去向,一直奮戰(zhàn)在我國西部荒漠中的核基地。在一次航投試驗中,原子彈意外摔裂。鄧稼先明知危險,卻一個人跑上前去親自察看,導(dǎo)致身體鄧稼先受到核輻射的致命傷害。他忘我地工作,和許多著名科學(xué)家同心協(xié)力,攻破一道又一道科學(xué)難關(guān),終于為祖國點燃了那飽含著我國科學(xué)家們智慧和力量的神奇之火。1986年7月29日,他臨終前留下的話仍是如何在尖端武器方面努力,并叮囑:“不要讓人家把我們落得太遠……”4.你還知道哪些為新中國作出貢獻的科學(xué)家?你能說說他們的故事嗎?(1)華羅庚:梁園雖好,非久居之地1950年3 月,來自美國的“克利夫蘭總統(tǒng)號”郵輪航抵香港,略作停留,進行補給。
設(shè)計意圖:體會公共設(shè)施被破壞,給人們的生活帶來的不便和危害?;顒佣罕Wo我們的“朋友” 首先,課件出示有關(guān)破壞公共設(shè)施行為處罰的相關(guān)法律條文,學(xué)生說一說,破壞公共設(shè)施會受到怎樣的法律制裁。接著,教師列 舉一些社會生活中因破壞公共設(shè)施而受到法律制裁的事例。然后,課件出示幾個公共設(shè)施受到損壞的場景,教師引導(dǎo)學(xué)生 說一說,該怎么辦?并板書。設(shè)計意圖:知道愛護公共設(shè)施是每個公民的責(zé)任和義務(wù),破壞 公共設(shè)施會受到法律制裁?;顒尤荷拼覀兊摹芭笥选睂W(xué)生閱讀教材第 56 頁的兩幅圖片,傾聽一些公共設(shè)施的“心 聲”。然后,課件出示幾幅公共設(shè)施的圖片,學(xué)生小組交流這些公共 設(shè)施被損壞的原因,討論文明使用公共設(shè)施的金點子。全班交流匯 報,教師相機引導(dǎo),并板書。
教師:看吶,毛毛蟲正在侵蝕著我們的友誼樹,這些不利于友誼的行為我們統(tǒng)統(tǒng)拿掉。(摘掉友誼樹上的毛毛蟲卡片)教師:友誼樹上終于結(jié)出了豐碩的果實。朋友之間,貴在理解,貴在溝通。只有這樣,友誼之樹才能茁壯成長?;顒尤盒⌒】ㄆ瑐髡媲榻處煟号笥呀o予了我們那么多的幫助,帶來那么多的快樂,你想對你的朋友說什么?請同學(xué)們把你想說的話填寫在友誼卡片上。(學(xué)生制作卡并贈送卡片,采訪收卡片同學(xué)。讓學(xué)生認識什么是友誼,學(xué)會表達對同學(xué)的欣賞和友愛之情)教師:讓我們再次對我們的好朋友說出那句真誠的話語,師生齊讀:“我們的好朋友!”教師:《論語》“君子和而不同”,意思是君子在人際交往中,能夠與他人保持一種和諧友善的關(guān)系,但在對具體問題的看法上卻不必茍同于對方。人人都有自己的特點,不一樣的朋友帶給我們不一樣的感受。希望同學(xué)們以后主動去結(jié)識更多的朋友,大家取長補短,共同進步。
①看,好幾張都是關(guān)于汽車尾氣的圖片。那一輛普通轎車會排放多少溫室氣體呢?②小結(jié):同學(xué)們,現(xiàn)代化的交通工具給我們帶來便利的同時,也在大量制造二氧化碳,帶來全球變暖,最終給我們?nèi)祟悗韨?。預(yù)設(shè)(2):工廠廢氣小結(jié):工廠生產(chǎn)我們所需物品的同時,也在制造溫室氣體,使得全球變暖。預(yù)設(shè)(3):燃燒垃圾、燃燒秸稈預(yù)設(shè)(4):空調(diào)外機等電器①學(xué)生介紹②你們想過嗎?空調(diào)這些家電在投入使用的時候就會間接產(chǎn)生溫室氣體。③小結(jié):人類的很多活動都在大量排放溫室氣體,導(dǎo)致全球氣候變暖。預(yù)設(shè)(5):過度砍伐①這張?zhí)厥獾膱D片,是誰收集的?你是怎么想的?②小結(jié):大量砍伐森林減少了對溫室氣體的吸收。我們來看看全球森林面積的現(xiàn)狀。③同學(xué)們,看了介紹,你最大的感觸是什么?3. 小結(jié):“溫室氣體”排放以及其他人為因素已成為自20 世紀中期以來氣候變暖的主要原因。
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進行化簡。
一、教材的地位與作用 本節(jié)主要學(xué)習(xí)一元一次不等式組及其解集的概念,并要求學(xué)生會用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學(xué)習(xí),也是一種基本的數(shù)學(xué)模型,也為下節(jié)和今后解決實際生產(chǎn)和生活問題奠定了堅實的知識基礎(chǔ)。另外,整個學(xué)習(xí)的過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)學(xué)思想會一直影響著學(xué)生今后數(shù)學(xué)的學(xué)習(xí)。二、學(xué)情分析從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認知特點來說,學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化歸能力。但學(xué)生將兩個一元一次不等式的解集在同一數(shù)軸上表示會產(chǎn)生一定的困惑。這個年齡段的學(xué)生,以感性認識為主,并向理性認知過渡,所以,本節(jié)課的設(shè)計是通過學(xué)生所熟悉的問題情境,讓學(xué)生獨立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
三、說教法和學(xué)法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡單的應(yīng)用,2、說學(xué)法:根據(jù)本節(jié)課特點和學(xué)生的實際,在教學(xué)過程中給學(xué)生足夠的時間認真、仔細地動手書寫證明過程,使學(xué)生的學(xué)習(xí)落到實處。同時,培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說教學(xué)過程設(shè)計教學(xué)過程的設(shè)計有:1、問題引入新課:七年級已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過的知識引入,符合學(xué)生的認知規(guī)律。在拼圖活動中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準備,使學(xué)生體會到數(shù)學(xué)來源于實踐,同時對新知識的學(xué)習(xí)有了期待。
【設(shè)計意圖】:這一環(huán)節(jié)的設(shè)計主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認識概念。通過材料的閱讀,活動的實踐,讓學(xué)生在自畫、自糾中,加深對概念的理解,培養(yǎng)學(xué)生良好的畫圖習(xí)慣。(三)例題講解學(xué)生活動4:(由于例題都比較簡單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫出圖中A、B、C、D、E各點的坐標。例2、在直角坐標系中,描出下列各點:A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O(shè)計意圖】:例1的目的是給出點的位置,寫出點的坐標。例2的目的是給出點的坐標,描出點。學(xué)完概念之后,馬上對概念進行應(yīng)用,達到鞏固的目的。當時上課時這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。
有意義,字母x的取值必須滿足什么條件?設(shè)計意圖:通過例題的講解,使學(xué)生加深對所學(xué)知識的理解,避免一些常見錯誤。而變式練習(xí)設(shè)計,延續(xù)的例題的風(fēng)格,一步一步,步步深入,本節(jié)課的教學(xué)難點就在學(xué)生的操作活動中迎刃而解了。對提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運用,提高認識1、通過基礎(chǔ)訓(xùn)練讓學(xué)生體驗學(xué)習(xí)的成就感。2、應(yīng)用拓展:增加難處,再次讓學(xué)生聯(lián)系以前的知識,增強學(xué)生的數(shù)學(xué)應(yīng)用意識。(六)、總結(jié)評價,質(zhì)疑問難這節(jié)課我們學(xué)習(xí)了什么?設(shè)計意圖:學(xué)生共同總結(jié),互相取長補短,學(xué)生在暢所欲言中對二次根式的認知得到進一步的鞏固升華。五、板書設(shè)計.采用綱領(lǐng)式的板書,使學(xué)生有“話”可說,有“理”可循,在簡單板書設(shè)計中使學(xué)生體會到數(shù)學(xué)的簡潔美。
探究活動二的安排,是要讓學(xué)生明確只靠實驗得出的結(jié)論,可能會以點帶面,從而進一步說明學(xué)習(xí)推理的必要性。并小結(jié)出:如果要判斷一個結(jié)論不正確只要舉一個反例就可以了。探究活動三的安排是說明只靠實驗得出的結(jié)論也不可靠,必須經(jīng)過有根有據(jù)的推理才行?;顒咏涣鳎海?)在數(shù)學(xué)學(xué)習(xí)中,你用到過推理嗎?(2)在日常生活中,你用到過推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學(xué)生學(xué)會簡單的推理方法,同時增強學(xué)生的學(xué)習(xí)興趣。課堂練習(xí):①游戲:蘋果在哪里?②判斷:是誰打破玻璃?把練習(xí)變成游戲的形式,也是為了增加課堂的趣味性,提高學(xué)生的學(xué)習(xí)興趣。課堂小結(jié):進一步明確學(xué)習(xí)推理的必要性。課后作業(yè):①課本習(xí)題6.1:2,3。②預(yù)習(xí)下一節(jié):定義與命題
我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達到消元的目的.請大家把解答過程寫出來.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個方程組的解法,請同學(xué)們思考下面兩個問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個方程中同一個未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然分別在兩個方程的兩邊乘以適當?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個一元一次方程.③解一元一次方程.
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達式是本節(jié)課的重點加難點,所以在解決這一問題時及時引導(dǎo)學(xué)生總結(jié)學(xué)習(xí)體會,教給學(xué)生掌握“從特殊到一般”的認識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關(guān)系式的一般式的求法,以此突破教學(xué)難點。在學(xué)習(xí)過程中,我巡視并予以個別指導(dǎo),關(guān)注學(xué)生的個體發(fā)展。經(jīng)學(xué)生分析:(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當x=1760時,y=0.05×(1760-1600)=8(元);(3)設(shè)此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學(xué)效果課前:通過本節(jié)課的學(xué)習(xí),教學(xué)目標應(yīng)該可以基本達成,學(xué)生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達式,且通過本節(jié)課的學(xué)習(xí)學(xué)生的抽象思維能力,數(shù)學(xué)應(yīng)用能力都能有所提升,
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。(四)作業(yè)布置加強“教、學(xué)”反思,進一步提高“教與學(xué)”效果。四、說板書設(shè)計采用了如下板書,要點突出,簡明清晰。一次函數(shù)正比例函數(shù)圖像的畫法:確定兩點為(0,0)和(1,K)一次函數(shù)選擇的兩點為:(0,k)和(-b\k,0)五、說課后小結(jié)實踐證明,在教學(xué)中,充分利用教學(xué)方法的優(yōu)勢,為學(xué)生創(chuàng)造一個好的學(xué)習(xí)氛圍,來引導(dǎo)學(xué)生發(fā)現(xiàn)問題、分析問題從而解決問題。多媒體課件支撐著整個教學(xué)過程,令學(xué)生在一個生動有趣的課堂上,能愉快地接受知識
3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關(guān)點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內(nèi)的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設(shè)計,通過此題可讓學(xué)生進一步認識勾股定理的前提條件.效果:學(xué)生進一步加強對本課知識的理解和掌握.教學(xué)設(shè)計反思(一)設(shè)計理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進行主動學(xué)習(xí).教師只在學(xué)生遇到困難時,進行引導(dǎo)或組織學(xué)生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理.