(一)教材分析本節(jié)課是在學生已經學過除法和分數的意義以及分數與除法的關系的基礎上進行教學的。由于學生在理解比的意義上比較困難,教材并沒有采取直接給出“比”的概念的做法,而是密切聯系學生已有的生活經驗和學習經驗,提供了多種情境,引發(fā)學生的討論和思考,讓學生體會引入比的必要性,感受比在生活中的廣泛存在,也為“比的應用”“比例”等后續(xù)學習做好鋪墊。(二)教學目標在認真分析教材的基礎上,結合學生實際,我從知識、能力、情感等方面擬定了本節(jié)課的教學目標:知識目標:經歷從具體情境中抽象出比的過程,理解比的意義,能正確讀寫比,會求比值。能力目標:培養(yǎng)學生自主學習、獨立思考,能利用比的知識解決一些生活中的數學問題。情感目標:引導學生廣泛聯系生活實際,充分感受數學知識的美與樂趣,激發(fā)學生的求知欲望。
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結:分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結:分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.
探究點二:列分式方程某工廠生產一種零件,計劃在20天內完成,若每天多生產4個,則15天完成且還多生產10個.設原計劃每天生產x個,根據題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產x個,則實際每天生產(x+4)個,根據題意可得等量關系:(原計劃20天生產的零件個數+10個)÷實際每天生產的零件個數=15天,根據等量關系列出方程即可.設原計劃每天生產x個,則實際每天生產(x+4)個,根據題意得20x+10x+4=15.故選A.方法總結:此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結合生活實際,發(fā)現數學知識在生活中的廣泛應用,感受數學之美.
[設計說明]:只給出情景故事,感知了一個大數,這樣還不能引起學生對大數的深刻認識,所以再給出宇宙星空中的這些大數,讓學生讀讀、看看這些數,引起學生強烈的認知上的沖突,形成一種心理上的想讀、想寫的求知欲望。(二)、引出問題、探索新知在上面的例子中,我們遇到了幾個很大的數,看起來、讀起來、寫起來都不方便,有沒有簡單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學生完成上面4個例子中的數的表示。(學生對160 000 000 000這個數可能表示為、16×1010,教師要利用學生這種錯誤,強調a的范圍)4、教師給出科學記數法表示:a×10( )(1≤a<10)。[設計說明]:通過層層遞進的探究設計,啟發(fā)學生成功地發(fā)現“科學記數法”的表示方法,同時又通過學生示錯,讓學生記住a的范圍,體現了以學生為主的探究式教學。
1、 教材的地位和作用本課教材所處位置,是小學所學算術數之后數的范圍的第一次擴充,是算術數到有理數的銜接與過渡,并且是以后學習數軸、相反數、絕對值以及有理數運算的基礎.2、 教學目標①理解有理數產生的必然性、合理性及有理數的分類;②能辨別正、負數,感受規(guī)定正、負的相對性;③體驗中國古代在數的發(fā)展方面的貢獻.3、 教學重點和難點教學重點:理解正數和負數的概念和有理數概念.教學難點:對負數概念的理解和有理數的分類.二、 教學分析鑒于初一年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學法及情感教學,創(chuàng)設問題情境,引導學生主動思考,用大量的實例和生動的語言激發(fā)學生學習興趣,調節(jié)學習情緒。
(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論: 3、數軸上的點P與表示有理數3的點A距離是2, (1)試確定點P表示的有理數; (2)將A向右移動2個單位到B點,點B表示的有理數是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。 (六)、歸納小結,強化思想: 根據學生的特點,師生共同小結: 1、為了鞏固本節(jié)課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節(jié)課你學會了用什么來表示有理數? 2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數? 讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。
五、課堂設計理念本節(jié)課著力體現以下幾個方面:1、突出問題的應用意識。在各個環(huán)節(jié)的安排上都設計成一個個問題,使學生能圍繞問題展開討思考、討論,進行學習。2、體現學生的主體意識。讓學生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數方法是數學的進步;讓學生通過合作交流,得出問題的不同解法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納。3、體現學生思維的層次性。教師首先引導學生嘗試用算術方法解決問題,然后再引導學生列出含未知數的式了,尋找相等關系列出方程,在尋找相等關系、設未知數及作業(yè)的布置等環(huán)節(jié)中都注意了學生思維的層次性。4、滲透建模思想。把實際問題中的數量關系用方程形式表示出來,就是建立一種數學模型,教師有意識地按設未知數、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力。
一、教材分析:本節(jié)課選自北京師范大學教育出版社七年級上冊第五章第三節(jié),是學生學習一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數量關系,建立一元一次方程并用之解決實際問題,是學生運用數學知識解決生活中實際問題中的典型素材,可提高學生解決問題的能力,提高學習數學的興趣,形成學以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學情分析:通過前幾節(jié)解方程的學習,學生已經掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關系列出方程解應用題,但學生在列方程解應用題時常常會遇到從題設條件中找不到所依據的等量關系,或雖能找到等量關系,但不能列出方程這樣的問題,因此,在教師的引導下,通過學生親自動手制作模型,自主探索在模型變化過程中的等量關系,建立方程,從而將圖形問題代數化。
按此規(guī)律,第n個式子是 。師生活動:學生通過觀察,分析,歸納發(fā)現規(guī)律,并用含字母的式子表示一般結論。設計意圖:進一步理解字母表示數的意義,理解用含有字母的數學式子表示實際問題中的數量關系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數,我們班80%的同學喜歡上數學課,那么0.8p 就可以表示我們班喜歡數學課的人數。學生思考、交流后發(fā)言五、練習檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數比a的 倍小5,則這個數為 ;(3)全校學生總數是x,其中女生占總數52%,則女生人數是 ,男生人數是 ;(4)某校前年購買計算機 x 臺,去年購買數量是前年的2倍,今年購買數量又是去年的2倍,則學校三年共購買計算機 臺;(5)某班有a名學生,現把一批圖書分給全班學生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數,十位上的數字為a,個位上的數字b,則這個兩位數為 .師生活動:學生板演,師生共同評價總結注意(5)帶分數化假分數設計意圖:進一步提高用含有字母的式子表示實際問題中的數量關系的能力。
5、板書設計 §1.4船有觸礁的危險嗎 一、船布觸礁的危險嗎 1.根據題意,畫出示意圖.將實際問題轉化為數學問題. 2.用三角函數和方程的思想解決關于直角三角形的問題. 3.解釋最后的結果. 二、測量塔高 三、改造樓梯 五布置課后作業(yè): 習題1.6第12 3題 六、設計說明 具有現實意義和挑戰(zhàn)性的內容的設計,激發(fā)學生的學習興趣,使學生樂學。 開放性實踐問題和分層作業(yè)的設置,滿足每個學生的學習需求,使學生愿學。 多樣的學習方式和適時引導,提高學生的學習質量,使學生能學。 背景多樣,層層遞進,適時反思,發(fā)展學生的數學思維能力,使學生活學。 當學生樂學、愿學、能學、活學時,就將學會學習,將學習當成樂趣,作為生命中不可或缺的部分,也為學生終生學習奠定良好的基礎。
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
探究點二:用配方法解二次項系數為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數為1的一元二次方程的一般步驟:(1)移項,把方程的常數項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當的數,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當的數,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):
方法總結:絕對值小于1的數也可以用科學記數法表示,一般形式為a×10-n,其中1≤a<10,n為正整數.與較大數的科學記數法不同的是其所使用的是負整數指數冪,指數由原數左邊起第一個不為零的數前面的0的個數所決定.【類型二】 將用科學記數法表示的數還原為原數用小數表示下列各數:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數點向左移動相應的位數即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結:將科學記數法表示的數a×10-n還原成通常表示的數,就是把a的小數點向左移動n位所得到的數.三、板書設計用科學記數法表示絕對值小于1的數:一般地,一個小于1的正數可以表示為a×10n,其中1≤a<10,n是負整數.從本節(jié)課的教學過程來看,結合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調動,在拓展學生學習空間的同時,又有效地保證了課堂學習質量
【類型四】 含整數指數冪、零指數冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據有理數的乘方、零指數冪、負整數指數冪及絕對值的性質計算出各數,再根據實數的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數的乘方、零指數冪、負整數指數冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數冪的除法法則:同底數冪相除,底數不變,指數相減.2.零次冪:任何一個不等于零的數的零次冪都等于1.即a0=1(a≠0).3.負整數次冪:任何一個不等于零的數的-p(p是正整數)次冪,等于這個數p次冪的倒數.即a-p=1ap(a≠0,p是正整數).從計算具體問題中的同底數冪的除法,逐步歸納出同底數冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數學學習的魅力,為以后的學習奠定基礎
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現宣布,可能發(fā)現除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數冪的乘法【類型一】 底數為單項式的同底數冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據同底數冪的乘法法則進行計算即可;(2)先算乘方,再根據同底數冪的乘法法則進行計算即可;(3)根據同底數冪的乘法法則進行計算即可.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結:利用等腰三角形“三線合一”得出結論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設計1.全等三角形的判定和性質2.等腰三角形的性質:等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減?。鍟O計1.常量與變量:在一個變化過程中,數值發(fā)生變化的量為變量,數值始終不變的量稱之為常量.2.用表格表示數量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現的一些變化現象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來