提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

數(shù)學教師工作計劃

  • 北師大初中數(shù)學九年級上冊正方形的性質1教案

    北師大初中數(shù)學九年級上冊正方形的性質1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質與直角三角形的性質.【類型三】 利用正方形的性質證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經常連接對角線,這樣可以使分散的條件集中.

  • 北師大初中七年級數(shù)學上冊一元一次方程教案1

    北師大初中七年級數(shù)學上冊一元一次方程教案1

    某文具店一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結果兩種筆共賣出60支,賣得金額87元.若設鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設鉛筆賣出x支,根據(jù)“鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結果兩種筆共賣出60支,賣得金額87元”,得出等量關系:x支鉛筆的售價+(60-x)支圓珠筆的售價=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結:解題的關鍵是讀懂題意,設出未知數(shù),找到題目當中的等量關系,最后列方程.三、板書設計教學過程中,通過對多種實際問題情境的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學生在分析實際問題情境的活動中體會數(shù)學與現(xiàn)實的密切聯(lián)系.

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——打折銷售教案1

    北師大初中七年級數(shù)學上冊應用一元一次方程——打折銷售教案1

    方法總結:讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結:典例關系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設計本節(jié)課從和我們的生活息息相關的利潤問題入手,讓學生在具體情境中感受到數(shù)學在生活實際中的應用,從而激發(fā)他們學習數(shù)學的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關系列一元一次方程解決與打折銷售有關的實際問題.審清題意,找出等量關系是解決問題的關鍵.另外,商品經濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關的公式解決實際問題,提高學生的數(shù)學能力.

  • 北師大初中七年級數(shù)學下冊多項式與多項式相乘教案

    北師大初中七年級數(shù)學下冊多項式與多項式相乘教案

    解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結:解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內容,為以后的學習奠定基礎

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——追趕小明教案1

    北師大初中七年級數(shù)學上冊應用一元一次方程——追趕小明教案1

    解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結:環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學的應用與價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.

  • 北師大初中七年級數(shù)學下冊等腰三角形的性質教案

    北師大初中七年級數(shù)學下冊等腰三角形的性質教案

    方法總結:在等腰三角形有關計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質:等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質解題的一般思想方法:方程思想、整體思想和轉化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高

  • 北師大初中七年級數(shù)學下冊利用“邊角邊”判定三角形全等教案

    北師大初中七年級數(shù)學下冊利用“邊角邊”判定三角形全等教案

    AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練

  • 北師大初中七年級數(shù)學下冊利用“角邊角”“角角邊”判定三角形全等教案

    北師大初中七年級數(shù)學下冊利用“角邊角”“角角邊”判定三角形全等教案

    1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關問題.(難點) 一、情境導入如圖所示,某同學把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學生活動:學生先自主探究出答案,然后再與同學進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.

  • 北師大初中七年級數(shù)學下冊三角形的內角和教案

    北師大初中七年級數(shù)學下冊三角形的內角和教案

    解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內角和定理:三角形的內角和等于180°.2.三角形內角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內角和是180°這一結論

  • 北師大初中七年級數(shù)學下冊與面積相關的等可能事件的概率教案

    北師大初中七年級數(shù)學下冊與面積相關的等可能事件的概率教案

    方法總結:當某一事件A發(fā)生的可能性大小與相關圖形的面積大小有關時,概率的計算方法是事件A所有可能結果所組成的圖形的面積與所有可能結果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關鍵是要找準兩點:(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關的概率的應用如圖,把一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉動轉盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設計1.與面積有關的等可能事件的概率P(A)= 2.與面積有關的概率的應用本課時所學習的內容多與實際相結合,因此教學過程中要引導學生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進行合理的整合歸納,選擇適宜的數(shù)學方法來解決問題

  • 北師大初中七年級數(shù)學下冊與摸球相關的等可能事件的概率教案

    北師大初中七年級數(shù)學下冊與摸球相關的等可能事件的概率教案

    1.進一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點)2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點)一、情境導入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球為贏,那么這個游戲是否公平?二、合作探究探究點一:與摸球有關的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結:概率的求法關鍵是找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識相關的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機取的一個數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35

  • 北師大初中數(shù)學八年級上冊二次根式的運算2教案

    北師大初中數(shù)學八年級上冊二次根式的運算2教案

    1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;

  • 北師大初中數(shù)學八年級上冊平行線的判定1教案

    北師大初中數(shù)學八年級上冊平行線的判定1教案

    (2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內角互補,兩直線平行).方法總結:解此類題應首先結合圖形猜測結論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內錯角相等,同旁內角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內錯角相等,兩直線平行同旁內角互補,兩直線平行本節(jié)課通過經歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

  • 北師大初中數(shù)學八年級上冊認識勾股定理1教案

    北師大初中數(shù)學八年級上冊認識勾股定理1教案

    方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.

  • 北師大初中數(shù)學八年級上冊為什么要證明1教案

    北師大初中數(shù)學八年級上冊為什么要證明1教案

    解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結:檢驗數(shù)學結論具體經歷的過程是:觀察、度量、實驗→猜想歸納→結論→推理→正確結論.三、板書設計為什么,要證明)推理的意義:數(shù)學結論必須經過嚴格的論證檢驗數(shù)學結論的常用方法實驗驗證舉出反例推理證明經歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結論產生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數(shù)學結論的常用方法:實驗驗證、舉出反例、推理論證等.

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——雞兔同籠2教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——雞兔同籠2教案

    第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。

  • 北師大初中數(shù)學八年級上冊軸對稱與坐標變化1教案

    北師大初中數(shù)學八年級上冊軸對稱與坐標變化1教案

    解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數(shù),所以A2015的坐標為(-504,504).故填(-504,504).方法總結:解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設計軸對稱與坐標變化關于坐標軸對稱作圖——軸對稱變換通過本課時的學習,學生經歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程,掌握空間與圖形的基礎知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學學習的好奇心與求知欲.教學過程中學生能積極參與數(shù)學學習活動,積極交流合作,體驗數(shù)學活動的樂趣.

  • 北師大初中八年級數(shù)學下冊變形后提公因式因式分解教案

    北師大初中八年級數(shù)學下冊變形后提公因式因式分解教案

    (3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結:解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.

  • 北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    方法總結:本題結合三角形內角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.

  • 北師大初中八年級數(shù)學下冊不等式的基本性質教案

    北師大初中八年級數(shù)學下冊不等式的基本性質教案

    【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質可判斷a+1為負數(shù),即a+1<0,可得a<-1.方法總結:只有當不等式的兩邊都乘(或除以)一個負數(shù)時,不等號的方向才改變.三、板書設計1.不等式的基本性質性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質3:不等式的兩邊都乘(或除以)同一個負數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質2、3.本節(jié)課學習不等式的基本性質,在學習過程中,可與等式的基本性質進行類比,在運用性質進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質疑,通過練習中易出現(xiàn)的錯誤,引導學生歸納總結,提升學生的自主探究能力.

上一頁123...484950515253545556575859下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!