(5)高度不同,對平拋運動距離有何影響,是否因為高度減小后下落時間減小,所以要增大速度才能達到相同的距離?(教學(xué)實踐證明,這種想法在學(xué)生比較多見。已經(jīng)不自覺的沿用了自由落體運動的規(guī)律,又隱隱有運動等時性的痕跡。應(yīng)引導(dǎo)學(xué)生這一結(jié)果還需實驗驗證。)教師的引導(dǎo):其實,我們所提出的看法都跟平拋運動的規(guī)律有關(guān)系。那么平拋運動究竟有怎樣的規(guī)律呢?以前學(xué)過的直線運動知識還能用于今天的內(nèi)容嗎?由此逐步使學(xué)生意識到分析平拋運動須采用運動合成與分解這一方法。三、實驗驗證自主探究(15分鐘) 物理是實驗科學(xué),多媒體教學(xué)不能代替實驗。本教學(xué)設(shè)計的第三個環(huán)節(jié)是實驗驗證,鼓勵學(xué)生自主探究。引導(dǎo)學(xué)生根據(jù)自己的猜想(實驗?zāi)康模┰O(shè)計實驗進行驗證。(1)介紹手持式平拋豎落儀,引導(dǎo)并小結(jié)實驗要領(lǐng):聽兩小球下落聲音判斷其下落時間。體會合運動和分運動是等時的。
d.某物體沿直線向東運動,原來的速度是5m/s,2s后速度減小到3m/s,求2s內(nèi)物體速度變化。④如何探究物體作勻速圓周運動時,在Δt時間內(nèi)的速度變化?分析:有了同一直線上速度變化的鋪墊后,討論物體做勻速圓周運動速度的變化就比較自然了,為了給向心加速度方向的學(xué)習(xí)打好基礎(chǔ),可以通過小組協(xié)作,進一步完成下列思考題,使同學(xué)們認識到:時間間隔起短,速度變化的方向起接近半徑方向。(多媒體屏幕投影)a.物體沿半徑為1m的軌道做勻速圓周運動,線速度大小為,求1s內(nèi)物體速度變化并畫出1s內(nèi)速度變化的示意圖。b.分別求出上題中物體在0.5s、0.25s內(nèi)速度變化并畫出相應(yīng)的示意圖。由于沒有辦法直接利用實驗來驗證速度變化的方向,所以,我們采用提供思考題的方法,引導(dǎo)同學(xué)在合作學(xué)習(xí)、自主探究中完成。有了速度變化的研究為鋪墊,加速度的方向問題就迎刃而解了。
[小結(jié)]師:下面同學(xué)們概括總結(jié)本節(jié)所學(xué)的內(nèi)容。請一個同學(xué)到黑板上總結(jié),其他同學(xué)在筆記本上總結(jié),然后請同學(xué)評價黑板上的小結(jié)內(nèi)容。 (學(xué)生認真總結(jié)概括本節(jié)內(nèi)容,并把自己這節(jié)課的體會寫下來、比較黑板上的小結(jié)和自己的小結(jié),看誰的更好,好在什么地方。) 生:本節(jié)課我們通過伽利略理想斜面實驗,分析得出了能量以及動能和勢能的概念,從能量的相互轉(zhuǎn)化角度認識到,在動能和勢能的相互轉(zhuǎn)化過程中,能的總量保持不變,即能量是守恒的。通過這節(jié)課的學(xué)習(xí),使我們建立起了守恒的思想。 點評:總結(jié)課堂內(nèi)容,培養(yǎng)學(xué)生概括總結(jié)能力。 教師要放開,讓學(xué)生自己總結(jié)所學(xué)內(nèi)容,允許內(nèi)容的順序不同,從而構(gòu)建他們自己的知識框架。[布置作業(yè)]課后討論 P3“問題與練習(xí)”中的問題。[課外訓(xùn)練]以豎直上拋的小球為例說明小球的勢能和動能的轉(zhuǎn)化情況。在這個例子中是否存在著能的總量保持不變?
了解了第一宇宙速度及其意義之后,繼續(xù)提出問題,讓學(xué)生思考:如果衛(wèi)星的發(fā)射速度大于第一宇宙速度7.9km/s ,會出現(xiàn)什么情況呢?先讓學(xué)生們大膽猜想,然后再向?qū)W生們介紹 衛(wèi)星發(fā)射速度大于第一宇宙速度后的幾種可能情況,引出第二宇宙速度和第三宇宙速度,讓學(xué)生對第二、第三宇宙速度及其意義做定性了解。并通過演示Flash課件,幫助學(xué)生理解、加深學(xué)生印象。在學(xué)生對人造衛(wèi)星的原理及發(fā)射衛(wèi)星的速度條件有了初步了解后,接下來引導(dǎo)學(xué)生對衛(wèi)星的運動規(guī)律作進一步的探索。實際上衛(wèi)星并不是沿地表水平發(fā)射的,而是用火箭多次加速送到一定的高度的軌道后,再沿以地心為圓心的圓周的切線運行的。讓學(xué)生繼續(xù)深入思考:衛(wèi)星在不同高度繞地球運行時的速度怎么求呢?將衛(wèi)星送入低軌道和高軌道所需的速度都一樣么?如果把不同軌道上的衛(wèi)星繞地球的運動都看成是勻速圓周運動,引導(dǎo)學(xué)生利用已學(xué)的萬有引力和圓周運動的相關(guān)知識,探究衛(wèi)星繞地球的運行規(guī)律。
當(dāng)代社會生活的變化比以往任何時代都要快。語言尤其是詞匯記錄了這些發(fā)展變化,因而也涌現(xiàn)了大量的新詞新語。據(jù)統(tǒng)計,近幾年每年大約要出現(xiàn)1000個左右的新詞新語,而字典、詞典的多次修訂、增補就反映了這種情況。但相對來說,也有一些流行語又逐漸受到冷遇,甚至退隱。為了更好的對新詞新語與流行文化作一番檢視與探究,那讓我們考察一下它們是怎么產(chǎn)生的吧?老師先給同學(xué)們列舉四種途徑:大屏幕3。同學(xué)們能再舉出以上途徑的一些例子嗎?老師列舉(4)其實不只這些,那還有哪些途徑呢?找同學(xué)說并舉例。說的非常好,請同學(xué)們看老師的例子,總結(jié)(5)。從新詞新語的產(chǎn)生途徑可以看出,這些鮮活得像畫一樣的新詞就是這個時代跳動的血小板,它涉及當(dāng)代社會的重大事件、現(xiàn)象與時弊,以及人們?nèi)粘I畹母鱾€層面如人生意義、生活方式、愛情、友情、就業(yè)、消費、時尚等,時代性強,傳播面廣,反映著當(dāng)代社會時局與人們文化心態(tài)的變化。
投影上海市的衛(wèi)星城鎮(zhèn)建設(shè)、交通改善圖以及住房圖等,探討上海為解決城市化的問題做了哪些方面的工作?進一步引導(dǎo)思考總結(jié)對于城市化帶來的問題,除了上海市的做法,你還有什么想法?◆設(shè)計意圖:借上海的例子一方面引導(dǎo)學(xué)生解決問題的思路,讓學(xué)生自己掌握城市化問題及措施,活躍思維;另一方面幫助學(xué)生樹立學(xué)習(xí)優(yōu)秀的意識;4.活動設(shè)計.未來展望——生態(tài)城市課本38頁的活動,結(jié)合合肥市環(huán)城公園,解釋生態(tài)城市。◆設(shè)計意圖:進一步讓學(xué)生認識到人地協(xié)調(diào)的重要性,牢固樹立可持續(xù)發(fā)展的觀念。5.活動設(shè)計分析南京的城市化過程中存在哪些問題,除了共性外,還有沒有自己的個性問題?對于問題展開討論,并提出相應(yīng)的解決措施。◆設(shè)計意圖:結(jié)合身邊的地理,落實鄉(xiāng)土地理的教育,激發(fā)學(xué)生熱愛家鄉(xiāng),從身邊的環(huán)境小事做起,落實環(huán)境教育。
本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學(xué)運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;
《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標(biāo)是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)
學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學(xué)生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標(biāo)的全體作為總體,每一個調(diào)查對象的相應(yīng)指標(biāo)作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
2、講授新課:(35分鐘)通過教材第一目的講解,讓學(xué)生明白,生活和學(xué)習(xí)中有許多蘊涵哲學(xué)道理的故事,表明哲學(xué)并不神秘總結(jié)并過渡:生活也離不開哲學(xué),哲學(xué)可以是我正確看待自然、人生、和社會的發(fā)展,從而指導(dǎo)人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學(xué)生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結(jié),鞏固重點難點,將本課的哲學(xué)知識遷移到與生活相關(guān)的例子,實現(xiàn)對知識的升華以及學(xué)生的再次創(chuàng)新;可使學(xué)生更深刻地理解重點和難點,為下一框?qū)W習(xí)做好準(zhǔn)備。4、板書設(shè)計我采用直觀板書的方法,對本課的知識網(wǎng)絡(luò)在多媒體上進行展示。盡可能的簡潔,清晰。使學(xué)生對知識框架一目了然,幫助學(xué)生構(gòu)建本課的知識結(jié)構(gòu)。5、布置作業(yè)我會留適當(dāng)?shù)淖詼y題及教學(xué)案例讓同學(xué)們做課后練習(xí)和思考,檢驗學(xué)生對本課重點的掌握以及對難點的理解。并及時反饋。對學(xué)生在理解中仍有困難的知識點,我會在以后的教學(xué)中予以疏導(dǎo)。
新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復(fù)進行;(2)試驗的所有可能結(jié)果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不確定出現(xiàn)哪個結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標(biāo)號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分?jǐn)嚢韬髶u出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學(xué)運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;