提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——里程碑上的數(shù)1教案

  • 北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用1教案

    北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中七年級數(shù)學(xué)上冊角教案1

    北師大初中七年級數(shù)學(xué)上冊角教案1

    1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關(guān)系,并會進行簡單的換算.一、情境導(dǎo)入鐘表是我們生活中常見的物品,同學(xué)們,你能說出圖中每個鐘表時針與分針?biāo)傻慕嵌葐??學(xué)完了下面的內(nèi)容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關(guān)于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關(guān),角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形,說法正確.所以只有④正確.故選A.

  • 北師大初中七年級數(shù)學(xué)上冊絕對值教案1

    北師大初中七年級數(shù)學(xué)上冊絕對值教案1

    方法總結(jié):由絕對值的定義可知,一個數(shù)的絕對值越小,離原點越近.將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標(biāo)準(zhǔn)質(zhì)量的差的絕對值越小,越接近標(biāo)準(zhǔn)質(zhì)量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數(shù)的絕對值總是大于或等于0,即為非負數(shù),若兩個非負數(shù)的和為0,則這兩個數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個非負數(shù)的和為0,則這幾個數(shù)都為0.三、板書設(shè)計絕對值相反數(shù)絕對值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個數(shù)的絕對值相等兩個負數(shù)比較大小:絕對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數(shù)學(xué)術(shù)語,是本章的重點內(nèi)容,同時也是一個難點內(nèi)容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點的位置出發(fā),得出定義的.

  • 北師大初中七年級數(shù)學(xué)上冊合并同類項教案1

    北師大初中七年級數(shù)學(xué)上冊合并同類項教案1

    一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當(dāng)稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學(xué)的有關(guān)數(shù)學(xué)知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運用.解決問題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書設(shè)計數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識.教學(xué)中應(yīng)激發(fā)學(xué)生主動參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.

  • 北師大初中七年級數(shù)學(xué)上冊去括號教案1

    北師大初中七年級數(shù)學(xué)上冊去括號教案1

    方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內(nèi)的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調(diào)整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號法則和熟練運用合并同類項的法則.

  • 北師大初中七年級數(shù)學(xué)上冊扇形統(tǒng)計圖教案1

    北師大初中七年級數(shù)學(xué)上冊扇形統(tǒng)計圖教案1

    根據(jù)題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結(jié):從扇形統(tǒng)計圖中獲取正確的信息是解題的關(guān)鍵.語文老師對班上學(xué)生的課外閱讀情況做了調(diào)查,并請數(shù)學(xué)老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標(biāo)百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書籍的人數(shù)比全班的總?cè)藬?shù)即可得各個百分比,所有的百分比之和為1.方法總結(jié):由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.

  • 北師大初中七年級數(shù)學(xué)上冊第二章復(fù)習(xí)教案

    北師大初中七年級數(shù)學(xué)上冊第二章復(fù)習(xí)教案

    . 一個數(shù)的倒數(shù)等于它本身的數(shù)是()A.1 B. C.±1 D.04. 下列判斷錯誤的是()A.任何數(shù)的絕對值一定是非負數(shù); B.一個負數(shù)的絕對值一定是正數(shù);C.一個正數(shù)的絕對值一定是正數(shù); D.一個數(shù)不是正數(shù)就是負數(shù);5. 有理數(shù)a、b、c在數(shù)軸上的位置如圖所示則下列結(jié)論正確的是()A.a(chǎn)>b>0>c B.b>0>a>cC.b<a<0< D.a(chǎn)<b<c<06.兩個有理數(shù)的和是正數(shù),積是負數(shù),則這兩個有理數(shù)( )A.都是正數(shù); B.都是負數(shù); C.一正一負,且正數(shù)的絕對值較大; D.一正一負,且負數(shù)的絕對值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數(shù)的和是()A.-1999 B.-1998 C.1999 D.20009. 當(dāng)n為正整數(shù)時, 的值是()

  • 北師大初中七年級數(shù)學(xué)上冊第一章復(fù)習(xí)教案

    北師大初中七年級數(shù)學(xué)上冊第一章復(fù)習(xí)教案

    一、教學(xué)目標(biāo):1、會辨認基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會畫基本幾何體的三視圖,會判斷簡單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實背景中抽象出空間幾何體和基本平面圖形,進一步認識點、線、面。6、獲得一些研究問題的方法和經(jīng)驗,發(fā)展思維能力,加深理解相關(guān)的數(shù)學(xué)知識。7、體驗數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,初步形成對數(shù)學(xué)整體性的認識。教學(xué)重點:在具體的情境中,認識一些基本的幾何體,并能描述這些幾何體的特征。教學(xué)難點:是描述幾何體的特征,對幾何體進行分類。二、設(shè)疑自探1、梳理本章知識(一)生活中有哪些你熟悉的圖形?舉例說明.(二)你喜歡哪些幾何體?舉出一個生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語言說一說棱柱的特征?(直棱柱)

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)八年級上冊二次根式的混合運算2教案

    北師大初中數(shù)學(xué)八年級上冊二次根式的混合運算2教案

    本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。

  • 北師大初中數(shù)學(xué)八年級上冊二次根式的運算2教案

    北師大初中數(shù)學(xué)八年級上冊二次根式的運算2教案

    1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;

  • 北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    ∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認識到配方法是理解求根公式的基礎(chǔ).通過對求根公式的推導(dǎo),認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運算能力,并養(yǎng)成良好的運算習(xí)慣.

  • 北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

  • 北師大初中數(shù)學(xué)八年級上冊二次根式及其化簡1教案

    北師大初中數(shù)學(xué)八年級上冊二次根式及其化簡1教案

    方法總結(jié):(1)若被開方數(shù)中含有負因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結(jié)果的合理性等等.

  • 北師大初中數(shù)學(xué)八年級上冊用計算器開方1教案

    北師大初中數(shù)學(xué)八年級上冊用計算器開方1教案

    1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導(dǎo)致錯誤.K探究點二:利用科學(xué)計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    (1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!